
Version 1.2 - Last updated October 14, 2014

2 of 202 Sublime Text Power User

01. Sublime Text Power User
1. About The Author
2. Reviewers
3. Introduction
4. Mac, PC, Linux

▪ Jump Around!

02. Getting Started
1. Version 2 or 3?
2. Installing Sublime Text
3. Installing Package Control

▪ Installing a package
▪ Installing Packages Manually
▪ Adding a Repository

4. Onward

03. Getting Comfortable With The Command Palette
1. Goto Anything

▪ Files
▪ Line Numbers
▪ Fuzzy Search
▪ Code & Text Blocks
▪ Chaining Commands
▪ Excluding Files & Folders From Search

2. Changing Syntax
▪ Keyboard Shortcuts
▪ Snippets
▪ Practice

04. Editor Settings & Customization
1. Settings Files

▪ *.sublime-settings Files
• Syntax / Language Specific Settings
• Settings Files JSON Gotchas

▪ .sublime-keymap Files

2. Syncing Your Settings
3. Tabs, Spaces & Indentation

▪ Specifying Tabs Or Spaces
▪ Converting From Tabs → Spaces Or Spaces → Tabs
▪ Detecting Indentation
▪ Detect Settings with Editor Config Package
▪ Paste And Indent

4. Fonts and Type Sizing
• Consolas
• M+2m
• inconsolata
• Menlo (sublime default)
• Monaco
• Ubuntu Mono
• Adobe Source Code Pro

3 of 202 Sublime Text Power User

• ANONYMOUS PRO
• Dejavu Sans Mono
• Envy Code R
• Hermit

▪ Tweaking Fonts

5. Sidebar
6. Minimap

05. Code Completions and Intelligence
1. Code Hinting / Auto Complete

▪ Where Auto Complete Fails
▪ Settings

2. SublimeCodeIntel
3. Installing on ST3

▪ 1. Use the development branch
▪ 2. Clear your CodeIntel cache

4. 3. Fix the language-specific config
5. 4. Be patient

06. Terminal and Command Line Integration
1. OSX
2. Windows
3. Linux
4. Using subl from the command line

▪ Arguments

5. Terminal Package

07. Maximizing Screen Real Estate with Multiple Panes and Origami
▪ Panes Exercise
▪ Origami

• Create
• Destroy
• Focus
• Move
• Focus
• Resize

2. Moving Between Tabs
▪ OSX
▪ Windows and Linux

08. Working with Multiple Carets and Selection
1. Replacing Words

▪ Quick Find Next / Quick Skip Next

2. Modifying Multiple Lines at Once
3. Another Multi-caret Example

09. Themes and Color Schemes
1. Color Schemes

▪ Color Scheme Selector Package

2. Themes

4 of 202 Sublime Text Power User

3. Finding Themes
▪ Handy Tools

10. Snippets
1. Creating Snippets

▪ Content
▪ Tab Trigger
▪ Snippet Scope
▪ Description
▪ Saving

2. Finding Snippets

11. Efficient Searching, Finding and Replacing
1. Searching Inside of a Document
2. Search Options

▪ Regex Search
▪ Case Sensitive
▪ Whole Word
▪ Show Context
▪ In Selection
▪ Wrap
▪ Highlight Matches
▪ Use Buffer

3. Search & Replace Inside Projects and Folders
▪ Combining Filters

4. Incremental Find
5. Other Searching Tips

12. Moving Selecting, Expanding and Wrapping
1. Moving Lines and Code Blocks
2. Line Bubbling / Swapping
3. Reindenting Code Blocks
4. Joining
5. Duplicating
6. Deleting

▪ Deleting Words
▪ Deleting Letters

7. Inserting a line before
8. Wrapping with tags
9. Jump to BOL or EOL

10. Moving to ends and starts of lines and files.
11. Selecting, Jumping & Expanding

▪ Jump by Word
▪ Select & Expand word by word
▪ Select & Expand to certain words
▪ Jump by line
▪ Select & Expand to Line
▪ Select & Expand to Tag
▪ Select & Expand to Brackets
▪ Select & Expand to Indent

5 of 202 Sublime Text Power User

▪ Select & Expand to Quotes
▪ Selection and beyond!

13. Code Folding
1. Practice Code
2. Folding Selected Text

▪ Block level code folding

3. Fold Multiple blocks at once
4. Folding with arrows
5. Folding element attributes
6. Maintaining Folding State

14. Projects
1. .sublime-project file makeup

▪ 1. Folder Settings
▪ 2. Settings Overwrite
▪ 3. Build Systems

2. Creating and updating projects

15. Mastering Keyboard Shortcuts
1. Negating carpel tunnel
2. Reducing mistakes
3. Becoming a more efficient coder
4. The process of becoming a keyboard shortcut master
5. Referencing Shortcuts

6. What the heck are the ⌃⇧⌘⌥? + SUPER Keys!?
▪ ⌃
▪ ⇧
▪ ⌘ / Super / ÿ

▪ ⌥
▪ ?

7. Creating Custom Keyboard Shortcuts
▪ Default Shortcuts
▪ Your Custom Keymap File

• keys
• command
• args
• context

8. Dealing with Keyboard Shortcut Conflicts

16. Macros
1. Recording a macro
2. Adding a keyboard shortcut
3. Editing Macros

17. Running, Testing and Deploying with Build Systems
1. Creating a build File

▪ Selectors
▪ Variables
▪ Capturing Errors

6 of 202 Sublime Text Power User

▪ Path Issues
▪ Cross Platform

2. Build Resources

18. Bookmarks

19. Working with Git
1. Sublime + Git Tutorial

▪ Gittin' Ready
▪ Gittin' Goin'
▪ Adds and Commits
▪ Diffing
▪ Gitting everything else

2. Additional Git Packages
▪ Sidebar Git

3. GitGutter
▪ Sublimerge

• Comparing and merging two files
• Comparing Git Revisions
• Git, SVN and Mercurial Integration

20. Mastering Emmet
1. Emmet and HTML

▪ Elements
▪ Classes and IDs
▪ Attributes
▪ Text
▪ Multiple Elements and $ placeholder
▪ Nesting Elements
▪ Emmet Filters

• Closing Element Comments
• Escaping HTML
• Pipe to HAML or Jade
• Expand in a single Line

▪ Even More

2. Emmet and CSS
▪ Numbers and Units
▪ Colors
▪ More CSS

3. Other Emmet Hot Tips
▪ Wrap with Emmet Snippet
▪ Encoding / Decoding Data URI
▪ Increment/Decrement
▪ Lorem Ipsum
▪ Matching Pair

4. Other Emmet Treats

21. Workflow & Code Quality
1. Live reload

▪ Installing

7 of 202 Sublime Text Power User

▪ Live reload on mobile devices

2. Sublime Server
▪ Installation and Usage

3. Live Linting with SublimeLinter
▪ Linting your code

• JavaScript Linting Example
• CSS Linting Example

▪ Linting Settings

4. Working with FTP / SFTP
▪ SFTP Package

• Remote only server
• Mapping local to remote
• SFTP → Filezilla

▪ Transmit Doc Send

5. Tricky trick: Renaming and moving files
6. Bower Integration

▪ Bower Caveats

22. Vim Mode
1. Making Sublime Text act like Vim
2. Sublime Text 2
3. Sublime Text 3
4. Using Vintage Mode

▪ OSX 10.7+

5. What's not included

23. Language Specific Tweaks
1. CSS
2. LESS, SASS and Stylus

▪ Syntax Highlighting
▪ Helpful Tools

3. Coffeescript
4. Templating: HAML, Slim, EJS, Jade
5. JavaScript
6. jQuery
7. Node.js
8. PHP
9. Wordpress

10. Python
11. Ruby

24. Must have Add-on Packages
1. Emmet
2. Autofilename
3. HTML + CSS + JSON Prettifyer
4. Sidebar enhancements

▪ Open with...
▪ More Features

5. JSHint Gutter
6. Alignment

8 of 202 Sublime Text Power User

7. Bracket Highlighter
8. Writing Markdown with Sublime Text

▪ Syntax Highlighter
▪ Compiling
▪ Table of Contents

9. Maintaining State on a file
10. Expand to quotes
11. TODO

25. Tip + Tricks Grab Bag
1. Converting Case
2. Code Comments
3. Sort, Reverse, Unique and Shuffle
4. Distraction Free / Fullscreen Mode

26. fin
1. Updates
2. Have a question?

9 of 202 Sublime Text Power User

10 of 202 Sublime Text Power User

Wes Bos is an independent full stack web developer, author, educator and speaker.

He works with startups and large companies alike consulting on HTML5, CSS3,

JavaScript, Node.js and WordPress projects. Wes is also a lead instructor at Ladies

Learning Code and the Toronto based HackerYou where he leads part-time courses

and bootcamps on everything from beginner HTML to advanced JavaScript.

We lives in downtown Hamilton, Ontario where he works with his wife Kait Bos from

their 140 year old home under the company BosType.

This book would not have been possible without the hard work of the reviewers

listed below. I want to say a big thanks to everyone who gave this book a once-over

suggesting edits and correcting mistakes along the way.

• Ricardo Vazquez - vazquez.io / @iamrvazquez

• Alyne Francis - alynefrancis.com / @alynejf

• Darcy Clarke - darcyclarke.me / @Darcy

• Simon W. Bloom - simonwbloom.com / @SimonWBloom

SECTION 1

Sublime Text Power User

1.1 About The Author

1.2 Reviewers

11 of 202 Sublime Text Power User

http://ladieslearningcode.com
http://ladieslearningcode.com
http://hackeryou.com
http://kaitbos.com
http://bostype.com/
http://vazquez.io/
http://twitter.com/iamrvazquez
http://alynefrancis.com/
https://twitter.com/alynejf
http://darcyclarke.me/
http://twitter.com/darcy
http://simonwbloom.com/
http://twitter.com/SimonWBloom

Welcome and thank you for purchasing Sublime Text Power User!

As a developer, your editor is one of the most powerful tools that you have to

increase productivity and develop higher quality code. Learning to master your

editor is no different than learning to master your programming of choice. By

reading this book and learning to take advantage of every feature in Sublime Text,

you are committing to becoming a better and more well rounded developer.

Over the past 3.5 years, I've been a full-time Sublime Text user with a constant

hunger for getting to know the editor better. This is the book I wish I would have

had.

Whether you are new to programming or a seasoned vet, get ready for a torrent of

everything from neat little tricks, to foundational workflow ideas.

Most of the features and functionalities of Sublime Text are available on Mac, PC and

Linux. I have written this book from the perspective of a Mac user, but provide

insight for Windows and Linux users when the operating systems are inconsistent.

This book is written in small easy to digest sections and can be read from start to

finish, but doesn't necessarily need to be. With the exception of the first few

chapters, feel free to jump around to the parts that you need to reference.

1.3 Introduction

1.4 Mac, PC, Linux

Jump Around!

12 of 202 Sublime Text Power User

The current stable release of Sublime Text is version 2.0.2. That said, version 3 was

released in early 2013, to much acclaim, and is the preferred build at this time.

Although many add-ons and packages were initially incompatible with version 3

many projects have moved to support it.

If you are currently using version 2, it is highly recommended that you migrate to

Sublime Text 3. A migration guide can be found at http://wesbos.com/migrating-to-

sublime-text-3/.

This is the obvious first step for getting started with Sublime Text. There are three

versions of Sublime Text available at http://www.sublimetext.com/3dev - Stable,

Dev and Nightly. It's recommended that you run the Dev version which delivers

semi-frequent updates. These releases are also fairly stable and give you access to

some of the new and exciting features that may not make it into the Stable version

for a number of months. If you want to live on the edge, using the Nightly version

may be more your style. Since Sublime Text is so dang fast, it takes just seconds to

upgrade to the latest build.

SECTION 2

Getting Started

2.1 Version 2 or 3?

2.2 Installing Sublime Text

13 of 202 Sublime Text Power User

http://wesbos.com/migrating-to-sublime-text-3/
http://wesbos.com/migrating-to-sublime-text-3/
http://www.sublimetext.com/3dev

Like most editors, Sublime Text supports addons/plugins/extensions called

packages that extend the native functionality of the editor. We will dive into the

powerful package ecosystem more thoroughly in later Chapters of this book. For

now, to get our environment setup, we need to install something called Package

Control.

Created by the very talented Will Bond, this package manager allows you to easily

add, edit and delete your Sublime Text packages right from the editor - no fiddling

with downloads, updates or versions. There is a one time install to get the Package

Manager running.

1. Head on over to https://sublime.wbond.net/installation and copy the install code on the page

Note: Make sure to check the version of Sublime Text you're running. You can find this out by clicking on "Help

> Documentation" and the appropriate version 2 or 3 support guide will be shown.

1. Open the console by hitting the key combination Ctrl + \

2. Paste the previously copied text into the prompt followed by enter

3. Restart your editor

This process will install the Sublime Package Manager and allows us to install third-

party packages.

Installing a package with Package Control couldn't be easier. All packages are hosted

either on Bitbucket or GitHub. Fortunately for us, package control will interface with

these websites so we don't ever have to leave the editor.

Once you have package control installed, via the instructions above, open up the

command palette with ⌘ + Shift + p or by clicking Tools → Command Palette

and type install . You should be able to select the item that says Package Control:

Install Package . If you don't see it, you need to go back to the previous steps and

make sure you have installed package control properly.

2.3 Installing Package Control

Installing a package

14 of 202 Sublime Text Power User

http://wbond.net/
https://sublime.wbond.net/installation

If this is your first time installing a package or if you haven't installed one in a while,

you may have to wait a few seconds while package control fetches the latest list of

plugins. You can see that it's working in the lower left hand status bar:

Once it has finished fetching the list, you will be presented with a list of every

package available. Simply search for the one you are looking for by typing it's name

or scrolling down. You'll be required to do this often in this book; so getting

comfortable with this process is a good idea.

Sometimes you may find a package that isn't in package control and you will need to

install it manually; follow these steps in those cases:

Installing Packages Manually

15 of 202 Sublime Text Power User

1. Install Git on your computer

2. Grab the desired package's URL from it's repo page

3. Open up your computer's terminal or command line and navigate to the packages directory. You can do this by

typing cd followed by one of the following paths:

◦ Mac: ~/Library/Application Support/Sublime Text 2/Packages

◦ Windows: %APPDATA%\Sublime Text 2\Packages

◦ Linux: ~/.Sublime Text 2/Packages

4. Clone the package using: git clone [your-git-url] .

Your package should now be installed and ready to use!

Note: Package URLs should be located at the bottom right hand side of a GitHub repo or the top right of a

Bitbucket repo

Note: If you are using Sublime Text 3, change the "2" in the packages directory paths above to "3"

Cloning Example: For the Vintageous package, my command would be: git clone https://github.com/

guillermooo/Vintageous.git

As of Sublime Text 3, we now have an easier way to do manual package installations.

Using the command palette type in "Package Repo". Once there, look for Package

Control: Add repository and select it. It will then prompt you for the GitHub or

Bitbucket URL. Paste in your git URL and Sublime will attempt to install the package

for you.

That is all there is to set up Sublime Text for now. In the coming Chapters, we will

review every personalization possible to make the editor a perfect fit for you.

Adding a Repository

2.4 Onward

16 of 202 Sublime Text Power User

http://git-scm.com/downloads
https://github.com/guillermooo/Vintageous

In the last Chapter, we briefly touched on the command palette as a way to install a

package. Let's take a look at how we can do almost anything with this handy tool.

Although most commands can be accessed through Sublime Text's menu system, it's

always faster, and more savvy, to use keyboard shortcuts or the commands menu.

Let's look at some examples that you'd encounter fairly often when developing.

A command palette is often a new concept for users. I myself took time before finally familiarzing and utilizing

it to its full extent. Don't make that same mistake. The command palette is one of the most powerful tools in

Sublime Text; Helping speed up your workflow significantly.

Goto Anything is a very powerful ability to have at your disposal. It works by

bringing up a palette that allows you to navigate to any file, line or symbol within

your current projects or open files. As you type, Sublime gives you a live preview to

help narrow down your search.

SECTION 3

Getting Comfortable With The
Command Palette

3.1 Goto Anything

17 of 202 Sublime Text Power User

To bring up the Goto Anything palette, press ⌘ + P . There are also a few more

specific shortcuts in the paragraphs below. You can always close this box by pressing

ESC or the open keystrokes again.

Windows and Linux users should uyse Ctrl in place of ⌘

When you press ⌘ + P you will be presented with a list of files, folders or projects

you currently have open. The most recently used files will be at the top of this list.

From here you can start to narrow down your search by typing the name of the file,

folder or project you're looking for. Using the arrow keys, we can move up and down

these items.

You'll notice that Sublime Text also provides a quick preview of files found using this

search. Clicking or hitting enter on a file in the list of results will open it for you.

Files

18 of 202 Sublime Text Power User

Using this shortcut is much quicker then clicking around your sidebar and rooting

for the file you want. If you know you are looking for file named style.scss , you

don't need to spend time drilling down folders, when you can simply pop open Goto

and start typing.

If you have multiple matches for the same file name, no worries; Sublime helps you

out by showing each file's path directly below its name.

Goto Anything also allows you to jump to a specific line number within a file. When

you bring up the palette, start your query with : followed by the line number you

wish to go to.

Example: If I'm working on a file that gives me an error on line 235, I just need to type :235 into the Goto

Anything palette. Better yet, hitting Ctrl + G will both bring up the Goto Anything palette and pre-populate

it with : .

Line Numbers

19 of 202 Sublime Text Power User

If you've never heard of a fuzzy search before, you can think of it is a way of

searching through documents for an approximate string of text rather than an exact

match. I'll leave the complex, algorithmic interpretation out for now; Just know that

you don't need to type an entire word or phrase to find a match.

To do a fuzzy search, it's the same idea as with line numbers. The only difference is

that you use the pound symbol # instead of the colon : .

Example: Lets say I had a copy of the jQuery source open and I wanted to find all instances of "jQuery" I'd

simply open the Goto Anything palette and type #jq ; I'll now be able to quickly see and page through the

matches from my fuzzy search.

Developers often use this technique to do a quick search of their files to get to a

certain line or section of code. It is an easier way to quickly scan a document for

symbols or key combinations.

Note: Fuzzy search also works in the command palette for command names. A good example of this would be

to quickly change the syntax highlighting of an open document. To do this, hit ⌘ + P and then type ssjs . You

can see that the fuzzy search finds and highlights all the commands with the letters ssjs in them. You can

read more about this in the command palette section.

Fuzzy Search

20 of 202 Sublime Text Power User

CSS

Python

You're probably familiar with the pain associated in searching for a specific function,

class, or chunk of text in a file. Sublime lets you quickly navigate through these

blocks of text and code by opening the Goto Anything palette (⌘ + P) and typing @

(or just ⌘ + R). You're able to use the previously noted fuzzy search to filter this list

for specific functions, classes or blocks of text.

Code & Text Blocks

21 of 202 Sublime Text Power User

Example viewing a PHP file:

Example viewing a Python file:

Example viewing a CSS file:

Example viewing a Markdown file:

22 of 202 Sublime Text Power User

As you can see, this works great in pretty much every language. For instance, in a

JavaScript file you will see a list of all available functions whereas in a CSS file all

selector classes and IDs are shown.

The implementation for Markdown is also extremely helpful as it allows you to jump

between sections of content, as seen below:

23 of 202 Sublime Text Power User

Even better, Sublime Text 3 has introduced the ability to use this feature across your

entire project and open documents. This means if you created a function or class in

one file, you can quickly find or reference it while viewing another.

Note: You can use ⌘ + R to open Goto Anything and pre-populate the search with @

All of the features discussed so far are great as standalone features but become even

more powerful when used together.

For example, if you had a file in your project named plugin.py and wanted to find

that file, open it and then find a specific function within that file named

runCommand() you could by simply typing something similar to plug@rc .

Chaining Commands

24 of 202 Sublime Text Power User

There may be files or folders that you do not want to see in your Goto Anything

searches. Things like compiled JavaScript from CoffeeScript, compiled CSS from

SASS or any other assets. If you'd like to exclude specific files you can by modifying

your user settings file (Preferences → Settings - User) and defining the

binary_file_patterns property.

"binary_file_patterns": [".DS_Store", ".gitignore", "*.psd"]

The example above ignores any .DS_Store , .gitignore or .psd files. To exclude

entire folders, you can append a forward slash / to the end of a folder name.

"binary_file_patterns": ["node_modules/", "vendor/", "tmp/"]

Note: You may be tempted to use the file_exclude_patterns or folder_exclude_patterns properties to

exclude files from Goto Anything instead of binary_file_patterns ; While these both do the job, they also

happen to remove those files and folders from the sidebar - which may not be a desirable outcome.

Often you find yourself opening new tabs to quickly jot down temporary copy or

code. Unfortunately, your tab has no knowledge of what language you're typing in

and none of your packages will kick in. Unless you save the file, which is not your

intention, you will have to set the document's language manually to see proper

syntax highlighting.

Excluding Files & Folders From Search

3.2 Changing Syntax

25 of 202 Sublime Text Power User

Fortunately, you can see what syntax the tab is currently interpreting your code as in

the bottom righthand corner. Clicking on that name will allow you to choose

between the list of supported syntaxes.

Eliminating unnecessary use of your mouse is always top of mind; So, opening the

command palette and using the fuzzy search feature, noted earlier in this Chapter, is

the ideal way to find and set your desired syntax.

26 of 202 Sublime Text Power User

Note: Using a fuzzy search that contains ss or syntax helps quickly narrow down syntax highlighting

commands as they all begin with Set Syntax.

If you're having trouble remember certain keyboard shortcuts you can, again, utilize

the command palette for this.

Example: Forgot what the code folding and unfolding commands were? Type fold and the corresponding

keyboard shortcut reference will be neatly displayed to the right of the search results.

Most of your snippets should have keyboard shortcut associated with them but when

you install a package with snippets, it can be hard to know what is available without

digging through GitHub repositories, wikis or docs. Use snip to filter your snippets.

Keyboard Shortcuts

Snippets

27 of 202 Sublime Text Power User

As previously mentioned, you can open the command palette by clicking on Tools

in the top menu and then selecting Command Palette . However, the whole point of

the command palette is to limit your use of the mouse. That known, remembering

the command palette keyboard shortcut is essential to being a productive Sublime

Text user.

Take a moment to memorize and try out the command palette keyboard shortcut a

few times. ⌘ + Shift + p on OSX and Ctrl + Shift + p on Windows and Linux.

If you would rather use a different keyboard shortcut, check out Chapter 15.

Practice

28 of 202 Sublime Text Power User

Customizing your text editor to exactly suit your needs is one of the best things you

can do for your productivity as a developer. Unlike most editors, there aren't fancy

GUI menus that allow you to pick and choose settings - there are settings files.

There are two types of settings files, both of which are formatted in JSON.

All settings files are located inside of the Sublime Text packages folder. It's important

to know where these files are so you can easily reference them. The easiest way to

open this folder is from the menu bar.

Preferences → Browse Packages… OSX users will find Preferences under Sublime Text 2

In here there are quite a few different files and folders. The ones you use to

configure Sublime Text are usually found in the User folder - this is your folder and

will never be overwritten when you upgrade.

Everything from which font is being used and color schemes to the tab sizes and

ignored folders can all be set using custom editor preferences.

SECTION 4

Editor Settings & Customization

4.1 Settings Files

29 of 202 Sublime Text Power User

To find out what all the available settings are, you can take a look at the default file

by opening it up via Preferences → Settings - Default . This file is only used as a

reference. Setting custom preferences will override the settings in this default file.

Note: The default settings file may look large but is worth reading through to get an idea of what changes are

possible to enhance your work flow.

These files are where we specify all of our preferences. We will be doing most of our

customization in Preferences.sublime-settings which you can bring up in the

menu Preferences → Settings - User or by simply hitting ⌘ + , on OSX.

There are a few types of settings files and the editor references them in this order:

1. Default Settings (do not edit this file)

2. Packages/Default/Preferences.sublime-settings

3. Platform-Specific Settings (for those who jump between operating systems)

4. Packages/Default/Preferences (<platform>).sublime-settings

5. User Settings (where we will make almost all of our edits)

6. Packages/User/Preferences.sublime-settings

7. Syntax-Specific Default Settings (do not edit this file)

8. Packages/<syntax>/<syntax>.sublime-settings

9. Syntax-Specific User Settings (for those who wish to have different settings per programming language)

10. Packages/User/<syntax>.sublime-settings

If you open up your Preferences.sublime-settings (found in Preferences →

Settings - User) you will see a blank settings file like this:

// Settings in here override those in "Default/Preferences.sublime-settings", and

// are overridden in turn by file type specific settings.

{

}

All of our settings will follow JSON syntax and look something like this:

{

"setting_name" : "Setting Value",

}

*.sublime-settings Files

30 of 202 Sublime Text Power User

For some languages you may want different settings. For example, when editing

JavaScript files you might want to use spaces instead of tabs and turn off line

wrapping. On the other hand, when writing in Markdown, you still want hard tabs

and to see wrap lines. Instead of switching these settings between languages, you

can simply use the above reference order and create a new file called /Packages/

User/Markdown.sublime-settings . Inside you can put the following:

{

"word_wrap": true,

"translate_tabs_to_spaces": false

}

A few things to keep in mind if you are new to Sublime Text or JSON formatting in

general.

1. Use "double quotes" when defining both keys and string values (single quotes are not valid JSON).

2. Each key, value pair requires a comma between them

Example:

{

"setting_name" : true,

"another_setting" : 12,

"font_face": "inconsolata"

}

Note: Notice that the above JSON doesn't have a comma after the last line? You don't need one so leave it out!

This is one of the most common mistakes when editing JSON objects.

Sublime and its packages come with some great maps for keyboard shortcuts. These

keymap files work very similarly to the settings hierarchy noted above. We'll go into

detail on how you can write your own shortcuts, using keymaps, later in Chapter 15.

Syntax / Language Specific Settings

Settings Files JSON Gotchas

.sublime-keymap Files

31 of 202 Sublime Text Power User

If you have multiple computers that run Sublime Text, you will want to have the same

settings and packages on both of them. The two most popular, and automatic, ways

to do this is either with Git or Dropbox.

Dropbox is the preferred method as it is done passively and automatically, whereas

Git requires actively pushing and pulling.

Each operating system has a different set of instructions which you can find on the

Package Control Website. At the end of the day, we essentially need to link the folder

on computer 1 to computer 2. Since Dropbox and Sublime Text are in different

folders, we can create a symlink (symbolic link) which will tie the Sublime Text

/Packages/User folder to our Dropbox folder.

It's important to note that we don't want to link the entire Packages/ or Installed

Packages/ directory as it contains the actual code for the packages. We only want to

sync the User/ folder which contains Package Control.sublime-settings - the file

that tells Package Control which packages should be installed. Package Control will

make sure to grab the correct version of each package for your computer and install

it.

By syncing the entire User/ folder, we also make sure the following user

preferences get moved over:

• Your master settings file - Preferences.sublime-settings

• Your language specific settings files - CSS.sublime-settings

• Your custom snippets

• Your custom build tasks

• SFTP server information

• And other package specific information and settings

4.2 Syncing Your Settings

32 of 202 Sublime Text Power User

https://sublime.wbond.net/docs/syncing

By default, Sublime Text uses tab characters with a size of 4. If you prefer to use

spaces instead of a tab character, simply add this to your preferences file:

"translate_tabs_to_spaces": true

You can also change the tab size or the number of spaces a tab takes up. It defaults

for 4 but I prefer to use 2

"tab_size": 2

You will often run into a file or snippet of code that contains tabs or spacing the isn't

in tune with your preferred style. Rather than trying to reformat everything

manually, you can easily convert the files spacing preference by doing the following:

1. Open the file

2. Open the Command Palette (⌘ + Shift + p)

3. Type spaces

4. Find Indentation: Convert to Spaces in the search results

5. Hit enter

This command will convert the entire document from tabs to spaces. Type tabs to

find the command to do the opposite.

4.3 Tabs, Spaces & Indentation

Specifying Tabs Or Spaces

Converting From Tabs → Spaces Or Spaces → Tabs

33 of 202 Sublime Text Power User

You may have a personal preference between tabs and spaces, but not every project

will share that preference by default; Because of this, Sublime will attempt to detect

the tabs or spaces used. If you wish to turn this detection off, you can toggle this

following option in your settings file:

"detect_indentation": false

Preferences such as tabs vs spaces and new lines at the end of files can vary from

project to project.

For instance, the jQuery Project uses a full tab character while Node uses 2 spaces.

The editor config project is a package that is available for Sublime Text (as well as all

other major editors) which can help to bring some sanity to project-specific

formatting nuances. Project authors include a .editorconfig file in the root of their

project. When the Editor Config package is installed, it will detect this file, read the

config settings and update your Sublime Text settings to reflect the project's

preferences.

No more headaches keeping all of your team members or contributors on the same

page with formating!

One of the best tricks I've ever learned in Sublime Text is paste and indent. If you

have ever pulled a piece of code off the Internet and pasted it into your editor, you'll

no doubt feel the pain of having it paste in all weird leaving you to have to go in and

fix it.

Easy fix to this, instead of pressing the normal ⌘ + v to paste, is to simply switch

to using ⌘ + Shift + v to paste. This will automatically indent your code block

and switch it to your current use of tabs or spaces.

Detecting Indentation

Detect Settings with Editor Config Package

Paste And Indent

34 of 202 Sublime Text Power User

http://editorconfig.org/

Like that one? I loved it so I remapped my key combos to paste and indent by default

on ⌘ + v

Paste this little snippet into your key bindings file located at Preferences → Key

Bindings - User

{ "keys": ["super+v"], "command": "paste_and_indent" },

{ "keys": ["super+shift+v"], "command": "paste" }

Picking a font is one of the most important parts of making your editor feel just

right. Sublime gives us very fine grain control over how text is displayed.

To change your font, simply set the value of "font_face" like so:

"font_face": "inconsolata"

Picking which font to use is a very personal thing. Some developers place importance

on fonts that have an italic style, while others are picky about the visual difference

between 0 and o or how the equals and open bracket make a fat arrow => .

I've personally hopped around and used a few in the past few years and I'm currently

between inconsolas and M+2m.

Here are a few of best and most popular programming fonts.

4.4 Fonts and Type Sizing

35 of 202 Sublime Text Power User

Consolas M+2m

inconsolata Menlo (sublime default)

36 of 202 Sublime Text Power User

http://www.fontspace.com/m-fonts/m-2m
http://levien.com/type/myfonts/inconsolata.html

Monaco Ubuntu Mono

Adobe Source Code Pro ANONYMOUS PRO

37 of 202 Sublime Text Power User

https://github.com/todylu/monaco.ttf
http://font.ubuntu.com/
http://store1.adobe.com/cfusion/store/html/index.cfm?event=displayFontPackage&code=1960
http://www.marksimonson.com/fonts/view/anonymous-pro

Dejavu Sans Mono Envy Code R

Hermit

38 of 202 Sublime Text Power User

http://dejavu-fonts.org/wiki/Main_Page
http://www.fontsquirrel.com/fonts/Envy-Code-R
https://pcaro.es/p/hermit/

The first and most obvious thing you will want to do is change the font size:

"font_size": 16.0

You can also automatically add and change this value with CMD/CTRL + +/-

Another improvement I've made over Sublime Text's defaults is in increasing the line

height. This allows for greater readability.

"line_padding_bottom": 1,

"line_padding_top": 1,

Finally, there may be a few specific use cases where you will need to specify some of

these font options, although they generally provide no benefit to the user.

"font_options": ["no_bold", "no_italic", "no_antialias", "gray_antialias","subpixel_antialias", "no_round",

"directwrite"],

If you are coming from another editor, chances are you will want to set up Sublime

Text very similar to how you used to have it. For me, having that trusty left hand

sidebar was mine. I like being able to see the folders and files for the projects I'm

working on.

By default, Sublime doesn't come with the sidebar to show open folders and files. To

turn this on, simply hit ⌘ + K , ⌘ + B (Windows and Linux users use Ctrl) or

access it from the menu under view → Side Bar → Show Side Bar

The minimap is something that I've never seen in a code editor before. It allows you

to view your code from 10,000 feet and works like a scrollbar on steroids.

Tweaking Fonts

4.5 Sidebar

4.6 Minimap

39 of 202 Sublime Text Power User

Some love it and some hate it. Ultimately, it's just personal preference. Many

developers have said it's great as they can easily pick out comments or code blocks

without scrolling forever. This is especially helpful to Windows developers who don't

have inertial scrolling.

The minimap draws a block around the currently visible content. Depending on your

theme, you may want to add a border around that block with the following setting.

"draw_minimap_border": true

As I write this book, I'm able to see my progression. I have the border turned on to

easily display where I'm currently at.

40 of 202 Sublime Text Power User

A big part of a text editor's job is staying a few steps ahead of you. That means when

writing code, it should start to suggest possible endings to help you speed up your

development.

Out of the box, Sublime Text does an okay job at making suggestions for what you

want to use. Auto complete is enabled by default, so there is no need to turn

anything on. As you type, Sublime will offer hints for possible completions. Take this

snippet of JavaScript for example:

var x = {

open_that_sucker_up : function() {

return 'bar';

}

}

Typing open_that_sucker_up would take a long time, so as I type ope... , Sublime

will suggest the completion of it. Hitting tab will auto complete the function name.

SECTION 5

Code Completions and Intelligence

5.1 Code Hinting / Auto Complete

41 of 202 Sublime Text Power User

Sublime will also suggest possible snippets that are associated with the current

language. In my example below, as I type for , Sublime will look through my

JavaScript snippets and suggest two of them:

If you find yourself in a situation where auto complete isn't opening, you can trigger

it manually with Ctrl + SPACE .

Auto complete isn't very smart so it will often suggest things that don't make any

sense. Take the following single line of JavaScript as an example:

var vancouver = "Vancouver, BC";

Where Auto Complete Fails

42 of 202 Sublime Text Power User

A simple variable string assignment we have all seen in any language before. Now

let's say I wanted to do something with vancouver so I start typing va... . Up pops

auto complete with three suggestions: var , vancouver , and Vancouver .

First of all, I don't think I'd need to access var . Second, Vancouver (capitalized) is

only part of the string, so I won't ever need that. The one I'm after is vancouver ,

which is in the middle of everything.

The problem compounds when snippets get in the way:

So, while the auto complete is good, there are better options available to speed up

your development time.

43 of 202 Sublime Text Power User

Want to tweak the way auto complete works? There are a few options that you can

set in any of your .sublime-settings files.

"auto_complete": false will turn off auto complete entirely. If you wish to do this

specifically for a language, keep it out of your general user settings and place it in

your language settings file. More on this available in the settings file.

"auto_complete_size_limit" allows to to set the threshold size of a file where auto

complete works. Larger files with auto complete can slow down your editor so you

may want to change this depending on how fast/slow your computer is.

"auto_complete_delay" allows you to set a delay in milliseconds before it opens.

Want it right away as you type? Set it to 0. Want a 1 second wait? Set it to 1000.

"auto_complete_commit_on_tab" allows you to turn off the "tab to select"

functionality. Some developers want their tab key to insert a tab character, so they

turn this off.

If you are getting really custom with auto complete, you can also tweak the selectors

and triggers with auto_complete_selector and auto_complete_triggers . For more

information on these, view the Default settings file available at Preferences →

Settings - Default .

Sublime Code Intel is a package that provides smart completions. The package

provide support for all major languages including JavaScript, Mason, XBL, XUL,

RHTML, SCSS, Python, HTML, Ruby, Python3, XML, XSLT, Django, HTML5, Perl, CSS,

Twig, Less, Smarty, Node.js, Tcl, TemplateToolkit, PHP.

If you are using Sublime Text 2, go ahead and install it from Package Control. If you

are writing JavaScript, make sure to you have Node.js installed on your computer. For

those using Sublime Text 3, jump down to the end of the chapter and read the steps

to get it working.

Settings

5.2 SublimeCodeIntel

44 of 202 Sublime Text Power User

http://nodejs.org

Once installed, Sublime Code Intel will scan your projects and provide smart auto

completions to your code as it knows your structure of your application.

For those using Sublime Text 3, the package has been ported over, but support and

ongoing development seems to be lacking. Thankfully, the package is stable and

working on Sublime Text, it just takes a bit of work to get it going.

Thanks to John Blackbourne for detailing the process on his blog at

https://johnblackbourn.com/sublimecodeintel-st3. I've based the below

instructions off of his findings:

5.3 Installing on ST3

45 of 202 Sublime Text Power User

https://johnblackbourn.com/sublimecodeintel-st3

Don't use the Package Control version of SublimeCodeIntel. Instead, use a Git

checkout of the development branch.

To do this, you will need knowledge of Git and a terminal window. In the Sublime

Text menu, go to Preferences → Browse Packages - this is the folder where you will

need to move to with your terminal window.

Once in that folder, type

git clone -b development git@github.com:SublimeCodeIntel/SublimeCodeIntel.git

This will pull down the latest version of the code and switch to the development

branch.

If you've had older versions of SublimeCodeIntel installed, your CodeIntel cache

probably needs clearing.

To do this, quit Sublime Text then go to your home directory and delete the entire

.codeintel directory (eg. on OS X this is at ~/.codeintel).

Inexplicably, SublimeCodeIntel’s default config disables project scanning for PHP and

JavaScript files, which is what most users have been using it for.

To fix it, open the Sublime Text menu and go to Preferences → Package Settings →

SublimeCodeIntel → Settings – Default . At the bottom of this file are language-

specific settings for Python, JavaScript, and PHP.

Do not edit this config directly. Instead copy it's contents completely and paste it

into your user settings (Preferences → Package Settings → SublimeCodeIntel →

Settings – User). Then change the PHP and JavaScript settings from the bottom to

codeintel_scan_files_in_project settings to true.

1. Use the development branch

2. Clear your CodeIntel cache

5.4 3. Fix the language-specific config

46 of 202 Sublime Text Power User

When you first begin typing a function name or other entity that triggers CodeIntel,

the status bar will show you that the initial scan is taking place. I’ve noticed that this

status message disappears before scanning is actually complete, or it’ll state that

scanning is complete when it’s not. Be patient, and it will get there eventually.

5.5 4. Be patient

47 of 202 Sublime Text Power User

If you work heavily in the command line, it's worth taking some time to both

implement the subl command as well as learn all of the available arguments which

will tightly knit your terminal environment and Sublime Text.

First, you need to link up the subl command. subl allows you to send files from

terminal to Sublime Text in a variety of ways. Open up your terminal window and

paste this little snippet in:

Sublime Text 2

ln -s "/Applications/Sublime Text 2.app/Contents/SharedSupport/bin/subl" ~/bin/subl

Sublime Text 3

ln -s "/Applications/Sublime Text.app/Contents/SharedSupport/bin/subl" ~/bin/subl

SECTION 6

Terminal and Command Line
Integration

6.1 OSX

48 of 202 Sublime Text Power User

Having Trouble? Your mac may complain that there isn't a ~/bin folder. If this is the case, try to run sudo ln

-s "/Applications/Sublime Text.app/Contents/SharedSupport/bin/subl" /bin/subl . This will both ask you

for a password and install it on your systems /bin folder rather than the current user.

If you wish to use another command in place of subl , just replace the last instance

of the word subl . I've seen some developers use slime instead.

If you are on a windows machine, fear not! There is an easy way to have similar

functionality.

Simply open up the command line (start → run → ⌘) and paste the following

line:

Sublime Text 2

doskey subl="C:\Program Files\Sublime Text 2\sublime_text.exe" $*

Sublime Text 3

As of build 3065, Sublime Text now includes support to subl on windows.

subl.exe comes in the installation folder of Sublime Text - you must move it over to

your system path so it is available whenever you open the windows console.

While your install may vary, most windows computers will go something like this:

1. Copy subl.exe from C:\Program Files\Sublime Text 3

2. Paste into C:\Windows\System32

If you are running Linux, chances are you already have this setup, but here is how to

do it should you need it. Pop these into your bash profile.

Sublime Text 2

6.2 Windows

6.3 Linux

49 of 202 Sublime Text Power User

alias subl='/usr/bin/sublime-text-2'

Sublime Text 3

alias subl='/usr/bin/sublime-text'

The two most common use cases are to:

Open any directory

subl ~/path/to/folder

Open the current directory

subl .

or a single file

subl index.js

We can also specify the line of a file

subl weather.js:50

And even the exact column if you are tracking down a pesky bug that is breaking

your script

subl routes.js:34:20

Sublime also allows us to pass a number of arguments to the subl command. Let's

take a look at all of them now:

- (std in)

6.4 Using subl from the command line

Arguments

50 of 202 Sublime Text Power User

This is super handy if you run scripts from the terminal and want to pipe the output

right into Sublime Text. Here is a quick demo:

When I press Ctrl + D to signal I'm done, it pipes the info into a temporary .txt

document

--project <project>:

Load the given project

subl --project my-project.sublime-project

--command <command>:

Run the given command

51 of 202 Sublime Text Power User

subl --command css_tidy

-n or --new-window:

Sometimes you want to open a fresh window rather than add the file to the existing

project.

subl -n totallyDifferentFile.js

-a or --add:

Add the current file or folder to the active / last used sublime text window. I often

use this along with touch:

touch newFile.js

subl -a newFile.js

-w or --wait:

Waits for the files to be closed before returning. Helpful if you are writing to a file

and don't want to open a semi-finished file.

-b or --background:

Don't bring Sublime Text into focus. Handy when you are opening several files one

after another.

-s or --stay:

Keep the application activated after closing the file.

-h or --help:

Show the help - modified version of this.

-v or --version:

Show version and exit

52 of 202 Sublime Text Power User

On the other side of things, you can also go from Sublime to the terminal in one easy

step with Will Bond's Sublime Terminal package. It works on windows, linux and mac.

If you are an OSX user, it will use the built-in terminal.app that comes with OSX.

However, you have the option of using iTerm2, which is a more feature-rich version

of terminal.app. To turn this on, set the following under Terminal Settings - User

(available in the command palette).

{

"terminal": "iTerm.sh"

}

Once installed, you can either open a file's parent folder or a project's folder. The

quickest way is to use the keyboard shortcuts:

OSX:

• ⌘ + Shift + t to open the current file's parent directory in terminal

• ⌘ + Shift + Alt + t to open the current project directory in terminal

Windows & Linux:

• Ctrl + Shift + t to open the current file's parent directory in terminal

• Ctrl + Shift + Alt + t to open the current project directory in terminal

Commands are also available via the context menu by right clicking a file or folder

and selecting Open Terminal Here...

6.5 Terminal Package

53 of 202 Sublime Text Power User

http://wbond.net/sublime_packages/terminal

If you work on a nice big monitor or keep a strict ~80 char width limit in your code,

you probably like to code with multiple panes of code open at once. Multiple panes

are particularly helpful when working with styles and templating at the same time.

Since CSS/LESS/SASS aren't very wide, having both panes open at once is an option,

even when on smaller screens.

Panes in Sublime are pretty straight forward. You can have up to four columns, up to

3 rows, or a 2×2 grid of panes open at once. You can find all of these options

available under view → Layout

SECTION 7

Maximizing Screen Real Estate with
Multiple Panes and Origami

54 of 202 Sublime Text Power User

Menu-schmenu. We are efficient - lets learn the keyboard shortcuts for them.

OSX

⌘ + Option + [1-4] will split into 1-4 columns accordingly

⌘ + Option + 5 will give you a 4x4 grid

⌘ + Option + Shift + [2-3] will split into 2-3 rows accordingly

Windows and Linux

Alt + Shift + [1-4] will split into 1-4 columns accordingly

Alt + Shift + 5 will give you a 4x4 grid

Alt + Shift + Shift + [2-3] will split into 2-3 rows accordingly

Once you have your editor split into panes (note, Sublime calls these groups), we can

move focus from pane to pane. Let's give it a shot.

Start with a single pane and open up two different files. Focus the second file.

Panes Exercise

55 of 202 Sublime Text Power User

Now split the current window into two with the keyboard shortcut ⌘ + Option +

2 and focus the first tab with ⌘ + 1

56 of 202 Sublime Text Power User

What we want to do now is switch the first tab over to the second pane without

touching our mouse.

Pressing Ctrl + Shift + 2 will move the current file to the second pane.

57 of 202 Sublime Text Power User

Now we want to make a new file, but in the first pane. First we need to focus the first

pane and then create a new file/

Ctrl + 1

⌘ + N

Try this 10 times over to get the hang of the shortcuts. Soon enough they will

become second nature.

The above may be enough for you, but if you rock a large 27" or 4k display and have

space to spare, you may wish to have a little more control over splitting up your

screen. Enter Origami, a package that makes this possible by allowing users to split

and resize panes into infinity. It also offers a nice set of commands for moving files

from pane to pane.

To install bring up the command palette with ⌘/CTRL + Shift + P and type install.

Origami

58 of 202 Sublime Text Power User

After about two seconds you'll be prompted to type the name of the package. Go

ahead and search for origami and hit enter. It will take just a few seconds to install.

No need to restart.

Origami is simple, the functionality can be broken down into pane actions: create,

destroy, focus and file actions: move and clone.

Windows and Linux Users: Replace ⌘ with Ctrl for the following keyboard commands

The Origami keyboard shortcuts are twofold, you must always press ⌘ + K

followed by the keyboard shortcut. At any time you can open the Goto Anything

palette (⌘ + P) and type Origami to see all available commands and their

respective shortcuts.

59 of 202 Sublime Text Power User

To create a pane to the right: ⌘ + K , ⌘ + → . Use this with any direction - ← , ↑ , →

or ↓

Note that it is not necessary to take your fingers off the ⌘ key when switching

between K and ← , ↑ , → or ↓

To destroy a pane, add Shift to the above keyboard shortcut. So, ⌘ + K , ⌘ +

Shift → would destroy the pane to the right.

Focusing a pane will allow you to create and view tabs within that pane. For this, we

just drop the ⌘ from the second keyboard shortcut. ⌘ + K , → will focus the pane

to the right.

Create

Destroy

Focus

60 of 202 Sublime Text Power User

To move a file from one pane to another, we use the Shift key along with the

direction. ⌘ + K , Shift → would move the file to the right pane.

Of course, you can also just drag and drop your tabs from one pane to another.

Finally, the last option that Origami makes available to us is something I haven't seen

in a text editor before: Cloning. Cloning isn't a great name for it, it's more "opening

the same file twice without making a second copy". I guess that was too long. Cloning

a file allows you to open a mirror of the file and display it in another pane - you can

edit either file and both will be updated. This is helpful when you want to reference

the same file you are working on without having to scroll around and lose your spot.

To use clone, we use the control key. ⌘ + K , control → would clone the current

file to the right pane.

To resize your panes, simply drag an edge to the size that you desire. I like to use

Origami to have a small JavaScript REPL open at the bottom of my screen (More on

Sublime REPL in the packages section).

Move

Focus

Resize

61 of 202 Sublime Text Power User

Sublime is no different from most other programs with tabs (like Firefox or Chrome).

To move from tab to tab, you can use ⌘ + [1-9] to move to that numbered tab, or

the ⌘ + Option + ← or → to move to the previous/next tabs.

Sublime is no different from most other programs with tabs (like Firefox or Chrome).

To move from tab to tab, you can use Alt + [1-9] to move to that numbered tab,

or the Ctrl + tab to move forward a tab, and Ctrl + Shift + tab to move to the

previous tab.

7.1 Moving Between Tabs

OSX

Windows and Linux

62 of 202 Sublime Text Power User

Note: The following section makes use of the ⌘ key. Windows and Linux users should replace ⌘ with Ctrl unless

otherwise specified.

A caret is the little blinking line that indicates where you are currently typing. This is

often mistakenly called a cursor, which is the little pointer or hand that tracks where

your mouse is located. In Sublime Text, we can have as many carets as we want!

The simplest way to get started with multiple carets is to open a blank document,

add a few lines and then select each line by holding down ⌘ and clicking wherever

you wish to have an additional caret.

SECTION 8

Working with Multiple Carets and
Selection

63 of 202 Sublime Text Power User

Alternatively you can also use the keyboard and use Ctrl + Shift + Up/Down

(Ctrl + Alt + Up/Down to windows) to add additional carets to the previous / next

lines.

Once you have selected multiple lines, you can then go ahead and type and see the

output for each line

That is really cool, but where is that useful?

Let's take another example. Say we had a block of code and I needed to replace all

instances of the variable wes with alex .

var wes = {};

wes.firstName = "wesley";

wes.lastName = "bos";

wes.status = "Cool guy";

8.1 Replacing Words

64 of 202 Sublime Text Power User

if(!!wes.status.match(/cool/gi)) {

wes.score = 100;

}

else {

wes.score = 10;

}

There are a few ways to swap out every instance of wes . The first one that might

come to mind is a find/replace on just this selection - and you are right, we will

cover that in the searching and finding section of the book. For this exercise, we are

going to be using multiple selection to swap out every instance of wes .

To select all wes , we can hold down ⌘ and double click everywhere there is an

instance of wes . We could also double click the first wes and then hit ⌘ + D to

incrementally select each instance — practice both because you will find situations

where you will use both.

Once you have them all selected, simply just type alex and you are done!

65 of 202 Sublime Text Power User

Above we used ⌘ + D to select incrementally, which is great when everything you

are looking for is matched. However, sometimes you will need to skip over a match

and keep going.

For example, finding the word "wes" in the following list matches in "awesome" and

"western". To skip a match, first select it with ⌘ + D to move to it, then use ⌘ + K

+ D

Quick Find Next / Quick Skip Next

66 of 202 Sublime Text Power User

Use ⌘ + K + D to skip over matches

67 of 202 Sublime Text Power User

Another case is when you have been given some HTML that looks like the snippet

below. Ideally we would never have to work with something like this, but we have all

come across something like this at some point:

We need to prefix each image with thumb- . Problem is, each image path is a

different length and editing them manually would take forever!

Never fear! The following steps will quickly get every line selected:

1. Click on the first line

2. While holding down ⌘ and Option

3. Drag your mouse through the rest of the lines

You should now have a cursor somewhere on each line

8.2 Modifying Multiple Lines at Once

68 of 202 Sublime Text Power User

Again, use ⌘ + ← (Alt + ← for win/linux) to bring all cursors to the front of the

line, and then we will hold down Option while using our arrow keys to jump by

word. When in front of the file name, simply type thumb-

To show how awesome multiple carets are, let's take a look at some text that you

may get in an email that we need to convert to HTML.

1. Go to the store.

2. Buy some apples.

8.3 Another Multi-caret Example

69 of 202 Sublime Text Power User

3. Peel those apples.

4. Bake me a pie.

We need to convert this list to a legit ordered list. So our steps are:

1. Remove the 1,2,3 and 4 and trailing period which are typed as text.

2. Wrap each line with a list item and

3. Wrap all the lines in an unordered list and

4. Indent the list items

We could just do this manually. It might take a few minutes to wrap and indent, but

since we are essentially doing the same thing 4 times — once for each line — we can

use multiple carets and manage each line at the same time.

The first step is to get a caret on each line. In Sublime, hold down ⌘ and click

wherever you wish to place a caret. You can also use the keyboard and use

Ctrl + Shift + Up/Down to select lines.

⌘ + ← to get and bring all cursors to the front of the lines. Then hold down Shift

and select the first three lines.

Type in front of the content, hop to the end of the lines with ⌘ + → and

finish it off with a closing . (Note: We will learn how to do this even faster with tag

wrapping later in the book).

While you still have each line selected, use ⌘ +] to indent all the lines.

Finally, head to the top of the document with ⌘ + ↑ and type doing the

opposite for the at the end.

70 of 202 Sublime Text Power User

Themes and color schemes are one of my favorite parts of Sublime Text. As

developers, we stare at our screen for 8+ hours a day, so it is important to spend

some time evaluating our options and customizing the editor visuals to our liking. If

you are still using the default colours that came with Sublime when you installed it,

it's time to switch!

Color Schemes define what color your code shows up in. Background color, font

style and colors for things like comments, functions, arguments, scope and brackets

are all defined inside the color scheme.

Since Sublime Text is a relatively new editor, the author has created it to be able to

use TextMate theme files (.tmTheme), which has been around for years and has

many themes available. You can see a list of available color schemes by going to

Preferences → Color Scheme . These files are also located in /Packages/Color

Scheme - Default . Switching a theme from the menu will automatically update your

Preferences.sublime-settings file but you can code in the path like so if you

please:

SECTION 9

Themes and Color Schemes

9.1 Color Schemes

71 of 202 Sublime Text Power User

"color_scheme": "Packages/Theme - Cobalt2/cobalt2.tmTheme"

An even easier way to jump between multiple color schemes is to install the color

scheme selector package. This will allow you change and preview color schemes

right from the command palette.

Color Scheme Selector Package

72 of 202 Sublime Text Power User

Want to use two different themes for different programming languages? Easy, just set the "color_scheme" to whatever

theme you want to use in /Packages/User/[syntax].sublime-settings .

Here I have set the following in /Packages/User/CSS.sublime-settings

"color_scheme": "Packages/Color Scheme - Default/Solarized (Light).tmTheme"

It overrides the default of

"color_scheme": "Packages/Theme - Cobalt2/cobalt2.tmTheme"

73 of 202 Sublime Text Power User

The best part about color schemes is that they are just XML, which means you are

free to crack open your color scheme and edit it to your liking. To create your own

theme, I recommend starting from an existing theme that is similar to how you enjoy

coding. It's a good idea not to edit the existing .thTheme file inside the previously

mentioned folder - you will run this risk of having this overwritten with future

updates to Sublime Text. Instead copy the .thTheme file into your /Packages/User

folder and rename it to something like myTheme.tmTheme .

Finally, it's a good idea to replace the following six lines with a little bit about your

theme.

<key>author</key>

<string>Wes Bos</string>

<key>comment</key>

74 of 202 Sublime Text Power User

<string>Tweaked and refined Sublime Text theme based on the original cobalt</string>

<key>name</key>

<string>cobalt2</string>

Sublime text monitors the Packages folder for any files changes. So, like your user

settings, any change to a theme file will automatically be reflected upon each save,

this makes editing color schemes a breeze!

Themes are something that are totally unique to Sublime Text. Themes control how

the actual chrome of the editor looks. Things like the tabs, sidebar, search bar and

buttons are all controlled with a theme. Themes are made up of JSON .sublime-

theme files which include settings for width/height pixel sizes, opacity values, RGB

color values and paths to images.

The first theme past the default one Sublime Text comes with, Soda Theme, was

done by the talented Ian Hill of Buy Me a Soda. This theme includes entirely redone

icons and took a slimmer approach to tabs.

I've also created one based on the Soda Theme, with the help of Kyle Knight, to go

along with my Cobalt2 theme. Either the Soda theme or Cobalt2 are a huge

improvement on the default Sublime Text UI. I'd like to encourage you to fork one of

these themes and tweak it until it's just right.

Themes can be found all over the net. If you aren't happy with one of the

prepackaged ones, take a look at the following resources to find a theme that suits

your fancy.

User submitted Textmate/Sublime Text Themes Repo on github:

https://github.com/daylerees/colour-schemes http://textmatetheme.com/

9.2 Themes

9.3 Finding Themes

75 of 202 Sublime Text Power User

https://github.com/buymeasoda/soda-theme/
http://buymeasoda.com/
https://github.com/idpro
https://github.com/wesbos/cobalt2/
http://wiki.macromates.com/Themes/UserSubmittedThemes
https://github.com/daylerees/colour-schemes
https://github.com/daylerees/colour-schemes
http://textmatetheme.com/

For a more visual approach to editing your theme, there is a fantastic tool created by

Allen Bargi that lets you visually edit your color scheme.

The entire thing is open source and written in HTML5 with Node.js on the back-end,

so you can run your own version and improve upon it. Code available at

https://github.com/aziz/tmTheme-Editor

You can try the live version at http://tmtheme-editor.herokuapp.com/

Handy Tools

76 of 202 Sublime Text Power User

https://github.com/aziz
https://github.com/aziz/tmTheme-Editor
http://tmtheme-editor.herokuapp.com/

Snippets are small (or large), predefined pieces of code that you use repeatedly to

speed up development productivity. If you find yourself writing the same or at least

similar code over and over, you may wish to create or source a snippet to make that

faster.

At their simplest, snippets consist of a tab trigger that opens up into a larger piece

of code. Snippets can be peppered with placeholders which let you set defaults and

spots which you can tab through to.

To create a new snippet, go to Tools → New Snippet... and you will see the

snippet boiler place which is just a little XML. By default most of it is commented out,

but let's uncomment the snippet and step through each part.

<snippet>

<content><![CDATA[

I ${1:love} to make ${2:snippets!}.${3}

]]></content>

<tabTrigger>hello</tabTrigger>

<scope>source.python</scope>

<description>A sample snippet</description>

</snippet>

SECTION 10

Snippets

10.1 Creating Snippets

77 of 202 Sublime Text Power User

The content is the code that will show when the snippet is triggered. Because

snippets are XML, they need to be inside of <![CDATA[and]]> in order for them to

work properly. Inside these tags, you can paste whatever code, in whatever language,

you wish.

Snippets can be peppered with placeholders which let you set defaults and spots

which you can tab through to. Placeholders are noted with ${1} where the number

is the order in which you tab through. We can also set the default text with a similar

syntax of ${1:default text for this placeholder}

Placeholders can also be used multiple times within a snippet. This is helpful when

you need to type the same variable name a few times, such as in a JavaScript for loop:

var len = myArr.length;

for (var i=0; i<len; i++) {

console.log(myArr[i]);

}

Chances are you may want to use the variables len , myArr , and i , but if you don't,

you can just tab through and change them all at once!

Content

78 of 202 Sublime Text Power User

We have already learned that all the snippets are available through the GoTo

Anything menu, and this is a good way to find a snippet that you don't use very often.

For more frequently used snippets, you should assign a tab trigger that allows you to

type and expand on the go.

For the above javascript snippet, I assigned the tab trigger of jsfor . Now, when I

wish to use that snippet, I simply type jsfor followed by the tab key to expand.

<tabTrigger>jsfor</tabTrigger>

Tab Trigger

79 of 202 Sublime Text Power User

You may be wondering why I had to call my last snippet jsfor instead of just for .

What happens when we have a for loop snippet for JavaScript but we also want one

for use in python?

Well, I could have just called it for and assigned a scope to it. Setting the scope as

source.js will expose this snippet to you only when editing JavaScript files or

writing JavaScript within <script></script> tags.

The scopes are sometimes hard to pin down and they aren't always as clear as

scope.js .

If you are having trouble finding the scope, an easy way to find it is to open your

packages folder Preferences → Browse Packages… and find the folder associated

with your language. Inside of that folder will be a .tmLanguage file. Open it and

search for scope . You will find a line that looks similar to this, revealing what the

scope name for that language is.

<key>scopeName</key>

<string>source.css.less</string>

The description is pretty straightforward. If specified, the description will show up in

the command palette. When not specified, the filename is used. I recommend using

keywords so it's easy to reference your snippet in the command palette.

I use the fancy Unicode arrow → quite a bit in this book so I've made a simple

snippet for it, giving it a keyword description and an easy tab trigger of >>

Snippet Scope

Description

80 of 202 Sublime Text Power User

<snippet>

<content><![CDATA[

→

]]></content>

<tabTrigger>>></tabTrigger>

<description>→ Fancy Unicode Arrow</description>

</snippet>

Finally, when it comes to saving your snippets, you can put them anywhere in your

packages folder. If your snippets are part of a package you are developing, keep them

within your package, otherwise I like to create a folder called snippets inside of my

User folder.

Snippets are the file type .sublime-snippet , so make sure you append that onto the

end, as sublime doesn't assume you are saving a snippet

The are loads of snippets online for your enjoyment, and I encourage you to go out

and find a set that meets your type of development.

The best spot to find snippets is in package control. You can browse right inside the

editor by typing "Install" into the command palette and searching for "snippet", or

browse the online community directory located at Will Bond's website

Saving

10.2 Finding Snippets

81 of 202 Sublime Text Power User

http://wbond.net/sublime_packages/community

You can also find snippets by doing a search on github. The new search feature lets

us filter for files or repos that include .sublime-snippet files.

https://github.com/search?utf8=%E2%9C%93&q=jquery+extension%3A.sublime-

snippet&type=Code&ref=searchresults

82 of 202 Sublime Text Power User

https://github.com/search?utf8=%E2%9C%93&q=jquery+extension%3A.sublime-snippet&type=Code&ref=searchresults
https://github.com/search?utf8=%E2%9C%93&q=jquery+extension%3A.sublime-snippet&type=Code&ref=searchresults

Search and replace you say? Does this even need to be mentioned, let alone an entire

chapter in this book?!

Yes, yes it does! The search functionality within Sublime Text is both very powerful

and extensive. It isn't exactly clear how to use everything and I often talk to people

who are confused about its functionality. So, let's dive in and get a better

understanding.

For this section's examples, I'm going to use a piece of JavaScript that has the word

"wes" multiple times throughout it.

var wes = {};

wes.firstName = "Wesley";

wes.lastName = "Bos";

wes.status = "Cool awesome guy";

if(!!wes.status.match(/cool/gi)) {

wes.score = 100;

}

else {

wes.score = 10;

}

SECTION 11

Efficient Searching, Finding and
Replacing

83 of 202 Sublime Text Power User

Here is a quick visual on all the instances of the three characters w , e , and s in a

row.

Keyboard shortcut in Cmd/Ctrl + F will open the most basic of search panes at the

bottom of the editor where you can then type in your search. If you have a word

selected at the time you hit Cmd/Ctrl + F , that phrase will be auto-populated into

the search box.

To cycle through search results you can either keep hitting the enter key or use

Cmd/Ctrl + G . If you go too far, adding Shift to either of these key combos will

reverse your direction.

Once you have found your match and you want to "get off the ride" and start editing

your document, simply hit the esc key and the editor will return to your document

with your search term highlighted.

11.1 Searching Inside of a Document

84 of 202 Sublime Text Power User

There are a number of options available when you are searching. Most of these are

fairly self-explanatory, but I will run though them just for reference sake:

Rather than just matching a string, there are times that you will need to match a

bunch of content that can only be accomplished with a regular expression. If I flip on

this setting, I'm able to search against any regex within my document.

You may have a document where the author went whitespace crazy, instead of

manually going through each line and deleting them, I can do a search for lines that

start with newlines — ^\n

11.2 Search Options

Regex Search

85 of 202 Sublime Text Power User

Another example would be searching for multiple attributes that are set in a certain

way. For example, all classes or ids set to food would be matched with

(class|id)="food"

86 of 202 Sublime Text Power User

If you are new to regular expressions, I recommend using the regexr and regexpr

tools to help you learn and get yourself up to speed.

Do you want the search to ignore the case of a word? For example a search for Wes

matches wes , WES , wES and so on. If so, leave it off.

Do you want to match partial words? For example if I search for text , should it

match the last four letters of sublimeText ?

When show context is turned on, the search results will include the previous two

lines of code and the next two lines of code for a total of 5 LOC. This is helpful in

understanding the context of a variable but can make your search results very long.

When it is turned off, the results only display the line with the match.

Case Sensitive

Whole Word

Show Context

87 of 202 Sublime Text Power User

http://www.regexr.com/
http://www.regexper.com/

When enabled, Sublime will limit the scope of the search to the currently selected

text. This is useful when you are looking to find all instances of a variable within a

certain selected area.

When searching within a document, the first selected result will be the one that

comes first after the caret. When wrap is turned on and the last result in the

document is tabbed through, the search will start again at the top of the document,

essentially wrapping around.

When turned on, the editor will circle, or highlight, all of the matches with an

outline. The currently selected one will be filled in with that color.

When searching inside an entire project, the default of Sublime will open it in a small

panel at the bottom of the editor. With use buffer turned on, search results will open

in a new tab, or as Sublime sometimes calls it, a buffer.

After the last section, searching inside a single document should be a piece of cake,

but what about when you want to search across an entire folder or project?

Cmd/Ctrl + Shift + F will bring up an extended panel that allows for this

extended searching.

In Selection

Wrap

Highlight Matches

Use Buffer

11.3 Search & Replace Inside Projects and Folders

88 of 202 Sublime Text Power User

Using the find button here will open a new pane that lists the results that were

found. You are then able to click on these results to open the corresponding file and

location.

The important field here is the where input. By default it will search all open files

and folders. So, if you have a project open it will search the entire folder, or if you

have dragged several files/folders into a Sublime window, the scope is limited to all

those files/folders.

Now if you want to limit the scope of your search, we have a few options:

Specific Folders — Multiple absolute folder paths each separated by a comma.

Helpful for when you are doing a find/replace on multiple similar codebases.

Project — Similar to the default, you can search the current project by entering

<project> into the where input.

89 of 202 Sublime Text Power User

Include Filter — Limit your search to a specific file, file type, or file name. Here you

can enter a full file name index.js , and then use an asterisk to wildcard a file type

or name. Examples of this include:

*.js — all .js files

index.* — index.html, index.js, index.php, etc...

page-*.* — page-home.html, page-about.php, etc...

Exclude Filter — Same as above, but append a minus sign - before the search.

Examples of this include:

.js, -.min.js — all but minified .js files

index.* , -*.js — all index files except index.js

page-*.*, -*admin* — page-[anything].[anything] except files with admin in the

name.

open folders — <open folders> will set the scope to open folders and not include

any other currently open windows.

open files — <open files> will set the scope to currently open files and not include

any currently open folders.

All of the above filters can be stacked together by separating them with a comma.

Putting multiple where inputs will evaluate files to match one or more match — not

all of them. Make sure to use the minus operator - to exclude files from search.

Another great feature of Sublime's search is the incremental find which allows you to

combine multiple carets and search into a multi-select based on your search term.

For more on this, using this same example, read the section on multiple carets.

Combining Filters

11.4 Incremental Find

90 of 202 Sublime Text Power User

Just like a terminal environment, pressing your keyboard's up arrow in the search

field will allow you to cycle through your previous searches.

11.5 Other Searching Tips

91 of 202 Sublime Text Power User

This section is filled with tips that will make you say "Ah! I didn't know you could do

that!". Little tricks that will help with with everyday coding tasks. This is where

Sublime really starts to shine.

Line Bubbling is one of my favorite parts of Sublime Text. It allows you to easily move

sections of code up or down through your document without having to cut and

paste.

To use line bubbling, hold down ⌘ + Ctrl (Ctrl + Shift on Windows) and use

your ↑ up and ↓ down arrow keys to move the lines around. This works for single

and multiple lines.

SECTION 12

Moving Selecting, Expanding and
Wrapping

12.1 Moving Lines and Code Blocks

12.2 Line Bubbling / Swapping

92 of 202 Sublime Text Power User

Now, if for some reason you end up with either a block of code or an entire file filled

with hard to read, messy and poorly indented code, reindent will be your best friend.

To automatically re-indent your code, simply select the code you want to indent and

then from the menu Edit → Line → Reindent

Sublime doesn't ship a keyboard shortcut for this by default. No problem, we can

make our own. Pop this little snippet into the Preferences → Key Bindings - User

file.

{ "keys": ["super+shift+r"], "command": "reindent" }

For more on indentation, refer for the tabs vs spaces section of this book.

Joining two lines together is something developers do all the time. I often see users

just hitting the backspace key until the line below jumps up onto a single line.

To join lines, place your cursor on the top line and hit ⌘ (Ctrl for windows/Linux)

+ J . Remember J for join.

This also works with multiple cursors, you you can bring everything onto a single

line extremely quickly.

Need to duplicate a line of code? Chances are you are may be currently using this

method:

1. Selecting the entire line with your mouse

2. Copy via ⌘ + C

3. Paste via ⌘ + V

That is too much work! Duplicate a lines quickly with ⌘ + Shift + D or Ctrl +

Shift + D for Windows/Linux users.

12.3 Reindenting Code Blocks

12.4 Joining

12.5 Duplicating

93 of 202 Sublime Text Power User

No longer need a line? Similar the one above, save yourself the manual work and

delete lines with one quick key combo of Ctrl + Shift + K .

Using Ctrl + K without the shift key will delete from the caret to the end of the

current line.

⌘ + backspace will delete from the caret to the beginning of the current line.

Side note: ⌘ + X will cut the current line without having to select it. Handy if you need to paste somewhere

else.

Deleting words seems easy, right? Select a word with your mouse and hit the

backspace. Or maybe you have figured out how to select word-by-word and then hit

delete. We have even easier ways to do this.

Backspace word-by-word with Ctrl + backspace .

Forward delete word-by-word with Ctrl + fn + backspace .

Backspace obviously removes a letter at a time.

fn + backspace does a forward delete. Or just the delete key on windows.

Need a new line? Enter works just great if your cursor is at the end of the line, but if

your cursor is in the middle of a line you can use ⌘ + Enter and ⌘ + Shift +

Enter to add lines after and before the current lines respectively. Windows and

Linux users swap ⌘ with Ctrl .

12.6 Deleting

Deleting Words

Deleting Letters

12.7 Inserting a line before

94 of 202 Sublime Text Power User

This is especially helpful because you do not need to be at the end or start of a line

for it to work - your cursor can be anywhere inside the current line and they will

jump above/below without disrupting the current line.

We will learn all about Emmet, which will hel you code HTML tags much faster,

among many other things, but what if you already have content that needs to be

marked up in HTML?

Well, Sublime comes with an extremely handy "wrap with tags" functionality. To use

it, simply select the text you wish to wrap with tags, and hit Ctrl + Shift + W . This

is also accessible via the menu under Edit → Tag → Wrap selection with tag .

By default, Sublime will wrap your content is a paragraph p tag.

Type any tag name and both the opening and closing tag will be updated:

You can even continue adding attributes without de-selecting the closing tag. Just

press space and keep typing!

Jump to the beginning / end of line in sublime text is simply ⌘ + →/← .

12.8 Wrapping with tags

12.9 Jump to BOL or EOL

95 of 202 Sublime Text Power User

If you wish to select text as well, add Shift to the above combination.

You may have noticed that if you have line wrapping on, sublime only brings you to

the visual EOL/BOL, not the hard EOL/BOL. So, if you are trying to select an entire

paragraph, it only grabs the top line:

Sometimes this is the desired outcome, but when you wish to select the entire line,

simply hit your arrow key twice.

⌘ + → + → to jump to hard end of line

⌘ + Shift + → + → to select to hard end of line

Windows/Linux users Users replace ⌘ with Ctrl . You may be rolling your eyes at this tip because you have the

almighty end key on your keyboard.

Jumping or selecting an entire file work just the same, but instead using the ↑ and

↓ arrows.

⌘ + ↓ to jump to end of file

⌘ + Shift + ↓ to select to end of file

Again, Windows and Linux users replace ⌘ with Ctrl .

Selecting text and expanding your selection is a large part of making your work flow

as efficient as possible. Every time you reach for your mouse to select a segment of

text, you are slowing yourself down.

12.10 Moving to ends and starts of lines and files.

12.11 Selecting, Jumping & Expanding

96 of 202 Sublime Text Power User

Most text selections are things you do over and over, so it is worth figuring out how

we can do it with just a few keystrokes. Let's take a look at the many ways to select

and expand your text.

Windows and Linux users, when unspecificed, replace ⌘ with Ctrl .

Let's start things off easy: jumping around by word. Instead of grabbing your mouse,

we can use Alt + → to jump by word. This is great when you wish to get a few

words over - try to use this instead of mousing over.

Do this over and over until you are comfortable with the keyboard shortcut.

Now let's say you want to select a few of these words as you move along. Simply add

in Shift to the mix to select and jump by word.

Alt + Shift + →

Selecting a word comes in handy when you want to replace multiple occurrences of

a word in a file, but do not want to use the potentially destructive find and replace.

To select a word, make sure your caret is somewhere inside that word and hit ⌘ +

D . Hitting it multiple times will select the next occurrences of that word.

Jump by Word

Select & Expand word by word

Select & Expand to certain words

97 of 202 Sublime Text Power User

You can then go ahead and perform any number of operations on the selection, such

as wrapping them with a tag:

Like this? Read more on this feature in Chapter 11.

To jump to the beginning or end line in Sublime Text we use ⌘ + ←/→ . Windows

users can use the end key in place of this.

Selecting an entire line is easy. We can use the technique stated above with ⌘ +

Shift + → + → or simply use ⌘ + L to select the entire line.

If you have word wrapping on, you may find yourself in the situation where ⌘ +

Shift + → only selects the first visible line and not the entire line:

To remedy this, add an extra → key press to select to the real end of line. So, ⌘ +

Shift + → + → .

Using ⌘ + L or Shift + ↓ multiple times will add the next line(s) to your selection.

Use Shift + ↑ to select lines above the current selection.

Jump by line

Select & Expand to Line

98 of 202 Sublime Text Power User

This one is similar to wrap in tag, but the opposite. Need to select all text inside a

tag? Hit Shift + ⌘ + a .

Using Shift + ⌘ + a again will select the tag as well, useful if you are working with

nested tags.

Once more will select all sibling tabs and any content inside the parent.

Not writing HTML? No problem, this one will select to brackets for languages that

are based on brackets.

Ctrl + Shift + M will select to your square and curly brackets. As always, doing it

a few times will increase select up multiple levels.

Using a language based on indentation such as Python, Slim or HAML? Just want to

select an entire block of indented code? Not to fear, sublime has fantastic

indentation detection built in.

⌘ + Shift + J will select your indented block. You can also use this in conjunction

with brackets. For example, in CSS if I wanted to select everything but the selector

and curly braces:

Select & Expand to Tag

Select & Expand to Brackets

Select & Expand to Indent

99 of 202 Sublime Text Power User

Note: If you are in Sublime Text 3, the keyboard shortcut was disabled in version 3. If you wish to have it back,

add the following code to your key bindings file located at Preferences → Key Bindings - User . { "keys":

["super+shift+j"], "command": "expand_selection", "args": {"to": "indentation"} }

This is one that isn't built right into Sublime Text but is incredibly helpful, especially

when dealing with HTML attributes or string variables.

This one comes in the form of a package. To install, simply open up Package Control

and search for the "Select Quoted" package. It is available for both ST2 and ST3.

Simply hit Ctrl + ' . Easy to remember because you want to control the quotes.

Once more will include the quotation in the selection:

Select & Expand to Quotes

100 of 202 Sublime Text Power User

By this point, you get the point. There are many ways to select your text. There are a

few more available under the Selection menu. Use this as a reference for

remembering the keyboard shortcuts and take some time to get comfortable with

the different types of selection.

Selection and beyond!

101 of 202 Sublime Text Power User

When working with large documents, it is helpful to fold sections of the code so it is

not visible. Code folding in Sublime text takes sections of your code and minimizes it

into a single character.

The best way to get comfortable with code folding is to try it out. For this chapter,

open up Sublime Text and follow along with the below code.

Code folding works in all languages. I've created a small snippet of JavaScript which

we can use to practice. Copy and paste this into Sublime and set the document mode

as JavaScript.

var obj = {

myStr: "Hello",

myFunc : function() {

console.log("hello");

$('.someDiv').animate({height: 500}, function(){}

// trigger the callback

console.log('Done');

});

},

myFunc2 : function() {

return "Just another Level 2 function";

},

myNum : function() {

return "Level 2 function";

SECTION 13

Code Folding

13.1 Practice Code

102 of 202 Sublime Text Power User

}

}

The simplest form of code folding is more of code compressing because it has

nothing to do with the indentation. Go ahead a select a few lines of code and type ⌘

+ Option + [(Windows users use Ctrl + Shift). You'll now see you have a little

icon indicating you have folded some code.

To unfold the code, repeat the above key combo with the closing square bracket —

] .

Selecting the code you want to fold can be a pain. If you maintain nice, clean

indenting within your document, you'll be able to quickly fold and unfold several

levels of code in just a few key strokes.

To fold a block, place your cursor anywhere within the block you want to fold. For

our example, lets place it in the myFunc function. Now you just hit the same keys as

before, Sublime will detect the nearest block level and fold it for you.

13.2 Folding Selected Text

Block level code folding

103 of 202 Sublime Text Power User

Another handy feature of folding is being able to fold all blocks that are indented

with a certain level. For this example, I want to fold all the and just see the

properties/functions of obj .

The keyboard sho rtcut for this is a little different. We need to hold down ⌘ (Ctrl on

Windows/Linux) and then tap K .

While you are still holding down ⌘ or Ctrl tap the level of code block you want to

fold. In this case 2.

Confused? ⌘ + K , ⌘ + 2

We now see that everything beyond 2nd level blocks are hidden. To unfold

everything again, we do the same thing but with 0.

Another, somewhat new, feature to Sublime Text is the code folding arrows that

show up in the gutter of the editor. These allow you to fold your code based on the

indentation by clicking the arrow.

13.3 Fold Multiple blocks at once

13.4 Folding with arrows

104 of 202 Sublime Text Power User

While these are fairly straightforward to use, the default setting of Sublime Text will

only show them on hover. To make these visible all the time, you can use the

following setting in your Preference.sublime-settings file.

"fade_fold_buttons": false

When working with an HTML document that is heavy on attributes, it can be helpful

to hide everything but the element type. This is extremely useful when working with

something like jQuery UI or Angular that have long element attributes,class names,

titles, data, and aria attributes. Now, this one is all or nothing, so you can't hide them

case-by-case.

13.5 Folding element attributes

105 of 202 Sublime Text Power User

To hide:

⌘ + K , ⌘ + T

To show again:

⌘ + K , ⌘ + 0

If you close and re-open a file, you will notice that all of your folds have disappeared.

This is frustrating when you spend lots of time folding your file. There is a package

called BufferScroll that maintains the state of your code folds even after you close

files or the editor. Read more about this package and it's many useful features in

Chapter 24.

13.6 Maintaining Folding State

106 of 202 Sublime Text Power User

Projects in Sublime Text are a nice way to manage different websites or applications

that you may be working on. The main benefit to using projects in Sublime Text are

the ability to have specific editor settings that apply only to that specific projects.

This is especially helpful when working with teams who may not have their editor

setup properly for contributing.

There are two files that make up a Sublime Text project: the .sublime-project file

and the .sublime-workspace file. The first being a file to hold your projects settings

and the second being a place where the editor can dump user specific data. If you

were to open the .sublime-workspace file, you would see all kinds of things from

previously opened files to editor settings. You will never need to edit this file, so it's

best just to ignore it.

When working with version control, the .sublime-project file should be checked in

and shared while the .sublime-workspace file should not. I find it helpful to get

myself into the habit of adding .sublime-workspace to all my .gitignore files.

SECTION 14

Projects

107 of 202 Sublime Text Power User

The .sublime-project file is, just like all other settings files in Sublime Text, a JSON

formatted file. Inside of the file are stored settings that make up the three main

functions

Perhaps the most obvious, the folders setting tracks which folders are included in

the project. This means that you are able to include multiple folders from all over

your system while using absolute file paths.

If you are using absolute file paths, you do not need to house the file in your projects

root directory. The .sublime-project file can live anywhere you please. The

downside to this is that sharing the .sublime-project file with team members won't

really work unless you have identical file systems.

If you do keep the .sublime-project folder in the root directory of your project,

you are able to use relative file paths.

The above file, I have this Book's project open.

1. The first path I include the entire book folder

14.1 .sublime-project file makeup

1. Folder Settings

108 of 202 Sublime Text Power User

2. The second path, I've "pinned" a nested CSS folder that I access regularly. Even though the css folder is inside

the first 0185-book folder, I'm able to the use dot-forward slash ./ to access relative file paths.

3. In the third path, I'm able to navigate one folder up to my main websites folder where I house all my coding

demos. To do this we use the two dots and a forward slash ../

Taking it even further, there are a number of settings you can use to fine tune your

folder list in the sidebar.

"name" allows you to rename each of these paths to a more user friendly name. In

the example below I've renamed my book's folder to "Sublime Text Power User"

"follow_symlinks": true is set automatically when adding a folder to a project. If

you even need to set that to false, it's there.

"file_exclude_patterns" and "folder_exclude_patterns" work just as they

normally do but are constrained to the current folder. Many of these files/folders

can be ignored at a global level, but this will be helpful when you want fine grain

control over which files and folders you are ignoring.

109 of 202 Sublime Text Power User

Settings are exactly the same as the ones found in the your .sublime-settings files.

If you add settings to your .sublime-project file, they will overwrite any settings

you have previously set. This is extremely helpful for code quality settings such as

tabs-vs-spaces or linting rules, which can often differ from one project to another.

In terms of specificity, syntax specific settings will always overwrite project specific

settings.

Here you are able to add build systems that are specific to this project. For more

information on build systems, make sure to cover the Build Systems section of this

book.

Every time you open a blank window in sublime you are essentially creating a new

project. However, to maintain your folders, settings and build system you must save

the project into a .sublime-project file. Once you have opened at least one folder

with sublime, you can save it via Project → Save Project As...

To add a folder to your current project, simply drag and drop the folder into the

sidebar. You are also able to access this via the Project menu.

To remove a folder, edit the file manually or use the context menu when right

clicking on the folder.

2. Settings Overwrite

3. Build Systems

14.2 Creating and updating projects

110 of 202 Sublime Text Power User

111 of 202 Sublime Text Power User

Using the keyboard is far superior to using a mouse in almost all ways. Whether you

are new to coding or been around for a long time, there are many benefits to re/

training yourself to lean on the keyboard:

I'm not a doctor, but I can tell you I had a really bad RSI / carpel tunnel problem.

Moving your hand with a mouse for 8+ hours a day isn't great for you. The less you

move your arms, the better.

We are all human, and we all make stupid mistakes. Developers are error prone. The

less we rely on typing out entire strings of code, the less errors we will make. We

have all spent 30+ mins on a problem that turned out to be a simple syntax error or

spelling mistake - let's stop doing that!

Spelling Mistaeks

Improper Syntax

SECTION 15

Mastering Keyboard Shortcuts

15.1 Negating carpel tunnel

15.2 Reducing mistakes

112 of 202 Sublime Text Power User

<a href"about.html">About ME

Nesting Troubles

<p>Hello world</p>

Forgetfullness

.wrapper {

float:left;

width:100%

color:blue;

}

The above are all things we have done before in whatever langauge we are using. Can

we cut down on them with keyboard shortcuts? Absolutely!

Finally, this might be the most obvious one is that using keyboard shortcuts can

really speed up development time.

Replacing a 10 second task with a 2 second task may not seem like a huge

improvement - what is 8 seconds saved? Over the course of a week, you can save

yourself hours of unnecessary grunt work. Improve your productivity by just 30

minutes a day and you can add an extra three weeks onto each year.

Becoming a keyboard shortcut master doesn't come overnight, you need to change

the way that you work and break old habits. In most cases, you will actually slow

yourself down for the first few times you use a shortcut. This is okay, you are

breaking and re-forming new habits that will save you tons of time in the future.

15.3 Becoming a more efficient coder

15.4 The process of becoming a keyboard shortcut master

113 of 202 Sublime Text Power User

The rule of thumb that I tell people is that when you do something twice that feels

inefficient, stop and figure out how you should be doing it. This will be annoying at

first because instead of doing it the 10 second way you are used to, you need to stop

and spend upwards of a minute finding and remembering the correct keyboard

shortcut. This is all part of the re-training process. After a few times of being slow,

you will commit the shortcut to muscle memory and everything will be high-fives

and sunny from there on out.

If and when you forget what the keyboard shortcut is, always remember that almost

every command is also available to you via the command palette or the Sublime Text

menu.

This means that you can pop open the command palette or the menu at any time to

find the command you are looking for. While you are there, don't just click the

command you want, take note how most commands have a keyboard shortcut right

next to it.

If a command has a keyboard shortcut, it will show it

15.5 Referencing Shortcuts

114 of 202 Sublime Text Power User

The same goes for anything in the command palette

Once you have done this a few times, you will start to commit the shortcut to

memory and things will start to move much faster for you!

There is also a fantastic package called Keymaps which takes inventory of both

native commands and ones introduced by packages compiling a list and cheat sheet

of all available key maps.

filter for the command you are looking for

115 of 202 Sublime Text Power User

https://sublime.wbond.net/packages/Keymaps

Part of a compiled list of my keymaps

One of the most frustrating things for keyboard shortcut newbies and pros alike is

looking at an image like the one in the last section and trying to remember what

⌃⇧⌘⌥ and SUPER are.

Spending some time to commit these to memory will greatly improve your quality of

life. Each one comes with a really silly way to remember.

The Control or Ctrl key.

Think of it as a button on a game controller. You use the up arrow to control where

your character in the game goes.

Everyone calls this a hat. Think of it as a hat someone in power, or control would

wear. A mad crazy controllers hat.

15.6 What the heck are the ⌃⇧⌘⌥? + SUPER Keys!?

⌃

116 of 202 Sublime Text Power User

The Shift key. Most windows keyboards have this symbol on it, but Mac users aren't

as lucky. We usually use Shift to make a Capital Letter. So the up icon is the one we

use to create uppercase letters.

Most shortcuts will refer to something called a SUPER key.

On mac, this is the Command, or ⌘ key.

On windows, this is the Windows key ÿ

On Linux, it will differ depending on your OS and personal preferences. If you are on

Linux, chances you already know what your super key is.

The Option / Alt key.

This one looks like a man riding on an escalator. He is lazy because he had the

alternate option of taking the stairs.

⇧

⌘ / Super / ÿ

⌥

117 of 202 Sublime Text Power User

Escape. This is only useful if you make use of the Vim plugin for Sublime.

The arrow is trying to escape from the circle.

A few times this book has referenced functionality that doesn't have a keyboard

shortcut associated with it. Sometimes you may also wish to re-map specific

functionality to a new keyboard shortcut. Creating your own keyboard shortcuts in

Sublime Text is easy.

Just like with our Sublime Text preferences, there is a file full of the default keymaps

that you are encouraged to view, but should never edit. This file is over-written

when Sublime Text is updated.

?

15.7 Creating Custom Keyboard Shortcuts

Default Shortcuts

118 of 202 Sublime Text Power User

To view the default file, open it via Preferences → Key Bindings - Default . Scan

though this file quickly to get a feel for the syntax and then we will break it down in

the next section.

Custom keymaps are operating system specific - this means that windows, Linux and

OSX each will have their own keymap file called: Default (Windows).sublime-

keymap , Default (Linux).sublime-keymap and Default (OSX).sublime-keymap . To

create or open yours, open Preferences → Key Bindings - Default and the editor

will open your os specific file.

This file is also JSON formatted as one big array of keymaps. So, if you have an empty

keymap, you can start it like so:

[

// start here

]

Each keyboard shortcut is stored as an object {} and take four properties.

For this example, I'm going to be creating a keyboard shortcut to open the Sublime

Text Preferences folder. We know we can press ⌘/Ctrl + , to open the settings

file, so I want to use ⌘/Ctrl + Shift + , to open the folder on my computer.

Keys is an array of keys that make up the shortcut. Most of the time you will have a

single value composed on two or more keys.

In this case, I want to use the combination of ⌘ Shift and , , so my object looks

like this so far:

{ "keys" : ["super+shift+,"] }

Note how there is a + in between each key. If I wanted to have a two-stage

keyboard shortcut, such as ⌘ + K , ⌘ + B to toggle the sidebar , we would have

multiple entries in the array:

Your Custom Keymap File

keys

119 of 202 Sublime Text Power User

{ "keys" : ["super+k","super+b"] }

Once we have which keys need to be pressed, we need to specify the command that

gets run.

There are hundreds of commands that could be run and while there is no official list

of commands from Sublime Text, the docs project has done a fantastic job at

collecting and documenting them as they find them.

The other way to find out which command you want is to browse the Default file for

ones that are already implemented.

The command we want is open_dir , which as you may guess will open up a

directory in Finder/Explorer. Our keyboard shortcut now looks like this:

{ "keys" : ["super+shift+,"], "command" : "open_dir" }

Many of these commands are for package developers, here are a handful of ones you

may find helpful:

move and move_to advance the caret by any number of words/characters/lines/

etc..

run_macro will run a specific macro, more on this in the Macros chapter.

expand_selection will expand your selected text to bol, hardbol, eol, hardeol, bof,

eof, brackets, line, tag, scope or indentation.

new_file will create a new file - I have remapped this to ⌘ + T as every other

program uses this convention to open a new tab.

new_window opens a new instance of Sublime Text - I have remapped this to ⌘ + N

just as many other programs do build

command

120 of 202 Sublime Text Power User

https://github.com/guillermooo/sublime-undocs/blob/sublime-text-3/source/reference/commands.rst

Arguments provide more information to the command. Our command right now just

runs "open_dir". Which one? We can use arguments to specify this.

Each command will have different argument names - it is best to look them up either

in the unofficial docs or in the Default file. In our case, we need to set the dir

property on the arg object. At this point, it's nice to format the object on multiple

lines:

{

"keys" : ["super+shift+,"],

"command" : "open_dir",

"args" : {

"dir" : "$packages"

}

}

Above we used a system variable - there are a number available to use in keyboard

shortcuts and they are the same ones available in build systems. For more read the

build systems chapter and check out the documentation for a list of all variables.

The final property is context and it allows keyboard shortcuts to be bound only in

certain circumstance, or contexts.

For example, we may want to bind the enter key only when the autocomplete

dialog is open, otherwise enter should do as it was normally intended.

Or, maybe a keyboard shortcut should only be bound when we are editing a bit of

CSS, and not JavaScript:

Context has four property/values:

The key is the context you are testing for, such as num_selections ,

setting.spell_check or selector (current scope). Check the docs for a full list.

The operator can be equal/not_equal , regex_match/not_regex_match or

regex_contains/not_regex_contains .

args

context

121 of 202 Sublime Text Power User

http://docs.sublimetext.info/en/latest/reference/build_systems.html#build-system-variables
http://sublime-text-unofficial-documentation.readthedocs.org/en/latest/reference/key_bindings.html#structure-of-a-context

The operand is what is being tested against, can be true , false , a number or a

regex .

match_all is by default set to false, but allows you to turn on matching for every

selection when using multiple carets / selections.

example

Let's say I'm working with PHP and I need a quick way to open up my localhost

server to the current project. I can use the context selector to keybind ⌘ + K , ⌘ +

O to open the local server in my default browser, but only when editing PHP files:

{

"keys" : ["super+k","super+o"],

"command" : "open_url",

"args" : {

"url" : "http://localhost/project-name"

},

"context" : [{

"key" : "selector",

"operator" : "regex_match",

"operand" : "source.php"

}]

}

Once you have enough packages, chances are that some keyboard shortcuts will

conflict each other.

If you find you are having trouble tracking down which commands conflict, installing

the package FindKeyConflicts will produce a list of conflicting key shortcuts:

You can also search by command, so if there is a specific command you are having

trouble with, it will produce a list of packages and then their available commands:

15.8 Dealing with Keyboard Shortcut Conflicts

122 of 202 Sublime Text Power User

https://sublime.wbond.net/packages/FindKeyConflicts

123 of 202 Sublime Text Power User

Macros are a small, yet powerful, part of Sublime Text that allow you to record a

series of steps and then play them back. Many developers think macros are just for

large repetitive tasks, but the real power comes from shortening the number of

keystrokes it takes to do a simple task. Taking 3-4 keystrokes into a single keystroke

can greatly speed up your development time; this are micro improvements but really

add up over the long run.

One example that I use very frequently is when writing JavaScript functions. Using

Sublime, the function looks like this with the | denoting the cursor.

var someFn = function() {

|

}

Sometimes I need to add a semi-colon to the end of the function. To do that, I would:

1. Arrow down

2. Type a semi colon

3. Arrow back up

4. Tab inwards

5. Start writing my code

Since I only want a semicolon some of the time, it doesn't make sense to create a

snippet here, but rather record a macro that does these steps for me.

SECTION 16

Macros

124 of 202 Sublime Text Power User

To record a macro, simply setup a piece of code that you would normally be editing.

In my case, it's the snippet of JavaScript above. Then follow these steps:

1. Go to Tools → Record Macro

2. The macro is now recording, so go ahead and go through the steps of the macro. For my macro, I will follow

steps 1-4 above.

3. Stop recording when finished via , Tools → Stop Recording Macro

4. Save the macro via Tools → Save Macro . This will go in your User directory and just like snippets, I like to

create my own folder for macros.

Thats it, you should now see your macro available under Tools → Macros → User

which will execute when you click it.

If you have to use the above menu technique to execute a macro, it doesn't really

save you any time. The smart thing to do would be to bind it to a keyboard shortcut.

To do this, open your keyboard bindings via Preferences → Key Bindings — User .

Depending on if this is your first keyboard shortcut, this file may or may not have

text inside of it already. This file is an array of keyboard shortcut objects, so go ahead

and add a line like this:

[

{ "keys" : ["super+;"], "command": "run_macro", "args": {"file": "function-semicolon}"} }

]

The above set the keys super (⌘) and ; to run this macro. You can see we are

using the command run_macro which accepts an argument file of whatever you

named your macro file, less the .sublime-macro extension.

If you have multiple keyboard shortcuts in here it will look like below. Remember to

put a comma after each item except for the final one.

[

{ "keys" : ["super+;"], "command": "run_macro", "args": {"file": "function-semicolon}"} },

{ "keys": ["super+shift+,"], "command": "open_dir", "args": {"dir": "$packages"} }

]

16.1 Recording a macro

16.2 Adding a keyboard shortcut

125 of 202 Sublime Text Power User

If the macro recording didn't turn out exactly as you wished, you can always edit

them by hand. If you open any .sublime-macro file and see the array of action

objects. Using the Sublime Text commands referencee you are able to build out some

pretty complex macros.

16.3 Editing Macros

126 of 202 Sublime Text Power User

http://docs.sublimetext.info/en/latest/reference/commands.html

Build systems allow you to run your command line tools right from Sublime Text -

these are commonly commands such as compass , make , rake or grunt , but can

really be anything that is available from the command line.

It's important to note here that build systems aren't a replacement for tools like

Gulp, Grunt, Rake, Ant or Make, but rather a way to run these tools from the editor

and see the response without leaving the editor. Depending on the workflow, you

may find you do not wish to replace having a terminal window open with a Sublime

Text build system. If you heavily use the terminal to work with your apps, you may

wish to forgo build systems and use your terminal alongside Sublime Text.

Build tasks are housed in a .sublime-build file which is a JSON file that holds a

number of options for running

Your own build files can live anywhere in your User folder. I recommend creating a

build folder inside of the your User folder that will hold all of your build tasks.

SECTION 17

Running, Testing and Deploying with
Build Systems

17.1 Creating a build File

127 of 202 Sublime Text Power User

At it's simplest, a build file takes the ⌘ argument. This is the command that will be

executed when the build is run.

Let's build something to run "ls -l" (listing the directory files)

{

"cmd" : "ls -l"

}

You can then select the build system from Tools → Build System and hit ⌘ + B

to run it.

You may or may not see build results. If you don't, open the build results tab (Tools

→ Build Results → Show Build Results). If you rather hide the results, set

"show_panel_on_build": false in your Preferences.sublime-settings file.

Just as we can with snippets, we can limit the scope of a build system to a specific

language with the selector attribute.

Let's say we only want the above build to work in PHP files:

{

"cmd" : "ls -l",

"selector" : "source.php"

}

You can also pass an array of multiple sources:

{

"cmd" : "ls -l",

"selector" : ["source.scss","source.sass"]

}

Then set the build system to Automatic under Tools → Build System and this

build system should be selected automatically.

When running commands, chances are you need some information about the

current file or folder to run that command. This is where variables come in .

Selectors

Variables

128 of 202 Sublime Text Power User

Let's say I'm working on style.scss and I want to compile it to style.css .

We can easy make a build system that looks like this:

{

"cmd": ["sass","style.scss", "style.css"],

"selector" : "source.scss",

}

Note how above instead of specifying a single cmd string, I've passed an array. It is

recommended that you use an array of commands rather than spaces in a string.

Now, make sure the build system is set, and run it with ⌘ + B .

The above is great, but there are a few questions to ask yourself here:

1. what if our file isn't called style.scss?

2. what if we want to rename the output file to something else? like output-style.css

3. What if we want to move the directory?

With variables, we can pass along information about the current file and directory.

For instance, the above build system is better written as:

{

"cmd": ["sass","${file_name}", "${file_base_name}.css"],

"selector" : "source.scss"

}

What about different folders? We can use the project folder variable

{

"cmd": ["sass","${file_name}", "${project_path}/css/${file_base_name}.css"],

"selector" : "source.scss"

}

For a list of all variables, check out the documentation

If you run the command and there is an error, you want to know where the error

occurred. Rather than spew everything into the console, build systems have two

settings - file_regex and line_regex which allow you to find the exact file and

line where the error occurred.

Capturing Errors

129 of 202 Sublime Text Power User

http://docs.sublimetext.info/en/latest/reference/build_systems.html#build-system-variables

Sometimes you might run into issues where Sublime Text can't find the command

you are trying to run. This often happens when you are running multiple versions of

ruby, or the executable is located somewhere other than your $PATH variable.

For this we need to specifically tell sublime where it is. For instance, I had trouble

running the sass gem because I use RVM for multiple versions of ruby. To fix, open

up a terminal window and type which sass to see where the gem is installed. We

can then use the path option in our build file like so:

{

"cmd": ["sass","style.scss", "style.css"],

"selector" : "source.scss",

"path" : "/Users/wesbos/.rvm/gems/ruby-2.1.1/bin/sass"

}

You can even set different options based on your operating system. Handy if you

switch between mac/linux/pc often:

{

"selector" : "source.scss",

"osx" : {

"cmd" : ["rm", "$file_name"]

},

"windows" : {

"cmd" : ["rd", "$file_name"]

}

}

Path Issues

Cross Platform

130 of 202 Sublime Text Power User

Build systems may seem simple, but there are many variables that go into creating a

build system depending on what language, OS or method you choose. Here are a few

fantastic resources and further reading on the subject:

http://docs.sublimetext.info/en/latest/reference/build_systems.html

http://addyosmani.com/blog/custom-sublime-text-build-systems-for-popular-

tools-and-languages/

17.2 Build Resources

131 of 202 Sublime Text Power User

http://docs.sublimetext.info/en/latest/reference/build_systems.html
http://addyosmani.com/blog/custom-sublime-text-build-systems-for-popular-tools-and-languages/
http://addyosmani.com/blog/custom-sublime-text-build-systems-for-popular-tools-and-languages/

Bookmarks are a great way to reference points in you code base making them easier

to jump to. I find I use bookmarks for temporary reference points inside a document

while I use the Goto Anything palette for all other jumping around.

With Bookmarks, you are bookmarking that line of code, not the line number.

Bookmarks stay with the line you initially intended, so adding or removing code

before the bookmark will not affect it. They do not, however, stay with you when you

copy/cut/paste lines of code. If you delete a line of code, the bookmark will be

assigned to the line of code below the deleted line.

Note: Bookmarks also remember the columns (or character) that you bookmarked it at, so it is possible to have

multiple bookmarks per line.

You can access the bookmark menu under Goto → Bookmarks but I suggest getting

comfortable with the keyboard shortcuts.

Set / toggle a bookmark with ⌘ + F2 . If you are using an Apple keyboard, make

sure you also are pressing FN . You'll notice that a tiny little chevron shows up in the

gutter marking the bookmark.

Windows and Linux users should use Ctrl in the place of ⌘ .

SECTION 18

Bookmarks

132 of 202 Sublime Text Power User

You can cycle through your document's bookmarks with F2 , or reverse the cycle

Shift + F2 . Clear all bookmarks with ⌘ + Shift + F2 .

Sublime offers an option to select all bookmarked positions via the menu system. If

you would like to create a keyboard shortcut for this, use the command

select_all_bookmarks and reference the section on creating your own keyboard

shortcuts.

133 of 202 Sublime Text Power User

If you work on a team or collaborate on any sort of open source project, you

probably use git and GitHub for version control. While GitHub offers a GUI

application for working with git, many developers still prefer the speed and

simplicity of the command line. Using git inside of Sublime Text allows you to have

many of the command line benefits without ever having to leave the editor.

I have also found that the menu system and language used in Sublime Text Git is

really nice for beginners who aren't entirely sure what all the git commands are -

simply typing git into the commands palette will give you all available git commands

for that current file and repo. This is great way for beginners to learn and git

comfortable with git.

Sublime doesn't have git integration out of the box so we need to install a package.

There are a number of packages for using git within Sublime Text and the one you

pick is really up to your own personal preference. I prefer to use one simply called

git (https://github.com/kemayo/sublime-text-2-git/) as it allows me to access

every single command from the Sublime command palette - this is very much

integrated with how you should be using Sublime Text. Later in this chapter we will

review a few more packages that you may find helpful when working with git.

SECTION 19

Working with Git

134 of 202 Sublime Text Power User

https://github.com/kemayo/sublime-text-2-git/

This tutorial assumes you at least have an idea of what Git is and why you would use

it for version control. If you are completely new to git, follow along, you will learn

how to got from a blank slate to adding files to github in this basic tutorial. If you are

already a git power user, you may want to just skim this tutorial to see how

everything lines up with your terminal/cmd line experience.

Before we go ahead, make sure you have git installed. If you have never setup git on

your computer before, GitHub has a great guide on how to do so.

So, to install Sublime Git, open up package control with ⌘ + Shift + P and type

install package.

Type git and install hit enter. Wait a few seconds and you are good to go!

First thing we need to do is initialize a blank git repository. Simply bring up the

command palette (⌘ + Shift + P) and type git init . You will be prompted to

double check the directory path in the bottom of the editor - make sure your are

initializing the repo in the folder that you really want it in. We now have an empty git

repository on our local computer.

19.1 Sublime + Git Tutorial

Gittin' Ready

Gittin' Goin'

135 of 202 Sublime Text Power User

http://git-scm.com/downloads
https://help.github.com/articles/set-up-git

The next step is to link things up with our github account. If you use bitbucket, gitlab

or some other remote repo, simply sub this url out for yours.

Now, this package provides commands for most common git use cases, but

sometimes you will need to run a more specific git command. One time this is true is

when you are adding a remote github repo to your local repo. For this, bring up the

command palette and type git custom . This will bring up an input in the bottom of

your editor.

Go grab your github url and type remote add origin <your github repo url> into

the command palette. Make sure to leave off the git part as sublime will run your

command as git [whatever you type] .

At any time you can take a look at the status of your git repo by simply running the

git status command. Here is what mine looks like after initializing the repo and

creating 3 files in the directory:

Adds and Commits

136 of 202 Sublime Text Power User

Three untracked files

The ?? denotes that those files are in the folder, but are untracked -- they haven't

been added to the repo yet. Add files to the repo by bringing up the command

palette and typing git add

This will bring up a second screen with the option to add tracked files, all files

including untracked, or a single file from the git repo. Since we haven't added

anything to the repo yet, let's go ahead and + All Files including untracked

files

137 of 202 Sublime Text Power User

Now when we do a quick git status we can see all three files changed from ?? to

A -- this means they have been Added to the repo.

You are also able to quickly add a single file by bringing up the command palette and running git add current file

Next we want to commit the files and then push them to our github repo. You

probably have the hang of this by now - open up the command palette and type git

commit. This will bring up a file called COMMIT_EDITMSG. Simply just type your

commit message at the top of the file and close it (⌘ + W) - no need to save this file.

So, we have added our files to the repo and committed those changes - now it's time

to push them to the github repo. Open the command palette and type git push. All

your currently commited files will be pushed to github and you should receive a

success message in the lower bottom pane of sublime text.

138 of 202 Sublime Text Power User

Result of git push current branch

Ta-da! It's on github!

One of my favorite parts about having git baked right into sublime text is the ability

to diff files right inside the text editor.

I'm going to make a few changes to my bookstyle.css file and then run Git diff

current file when I have it open. Git will compare the file against the one we just

added, committed and pushed.

Diffing

139 of 202 Sublime Text Power User

If you have never seen a diff file before, the black (called headers) give you a

summary of whats going on in this diff, the green are added lines of code and the red

are deleted lines of code.

140 of 202 Sublime Text Power User

I could write an entire book on how to use git, so for the sake of keeping on track I'm

not going to go through every single git command available. Here are a few common

commands as well as a few handy Sublime Text nuggets.

Pulling - git pull pulls the latests changes from the repo. Pretty simple but crucial

when you work on open source or on a team.

Branching - Sublime Git offers a great menu of options for working with branches -

you can easily create, switch, pull, push, delete and merge branches without having

to remember all those CLI arguments.

Open modified files - Use this to quickly open all files that have been modified.

Great for reviewing your code before you add and commit to a repo

Quick Commit - Busy person? Don't have to to add and commit your file? Add and

commit the current file in just one swoop by choosing git quick commit from the

command palette

Gitting everything else

141 of 202 Sublime Text Power User

There is an alternative package called SideBar Git (https://github.com/

SublimeText/SideBarGit) which will allow you to manage your files in the sidebar by

right clicking files/folders and triggering commands that way. I feel that the

command palette in the above plugin is far superior than clicking around - but to

each his/her own. This package also does not currently support git tagging.

When working on project that involve Git, it's helpful to know what lines have be

added, edited or deleted.

Git gutter is a simple yet powerful package that will show you just that, with icons in

the gutter.

If your gutter icons are just white, you need to make sure you are using a theme that

supports GitGutter. The package's readme has a list of supported colour schemes as

well as instructions on how to make your theme ready.

This plugin lets you diff and merge files from a git or svn repo right inside the

sublime text GUI. I prefer to use something a little more graphical to do merges, but

it looks to work great!

19.2 Additional Git Packages

Sidebar Git

19.3 GitGutter

Sublimerge

142 of 202 Sublime Text Power User

https://github.com/SublimeText/SideBarGit
https://github.com/SublimeText/SideBarGit
https://sublime.wbond.net/packages/GitGutter

At it's simplest, Sublimerge is great at comparing two files in your project - no

version control involved.

To use, simply select two files from the sidebar, right click and select Compare

selected files .

This will open the files side and side and highlight the differences.

From there, we can step through each change and either move it to the left, right or

ignore it.

To start the merge process, right click anywhere in the editor and select Go to Next

Change or type control + Option + = and then use Ctrl + Option + ,

/+ Ctrl + Option + . to merge to the right and left accordingly.

Comparing and merging two files

143 of 202 Sublime Text Power User

Sublimerge is aware of your git repo and is able to compare against different

commits.

To use this, open your git repo in Sublime and select a file from the sidebar with a

right click and you will see three options:

1. Compare To Revision — This will compare the current file to any previous git commit. When you select this, you

will be asked to choose a previous commit to compare it to.

2. Compare Revision to Revision — Similar to above, but rather than comparing the current file to a commit, you

will be asked to select two commits to compare against each other.

3. Show Changes introduced in Revision - select any revision and view what new changes were introduce with

that commit.

Comparing Git Revisions

144 of 202 Sublime Text Power User

For deeper integration into your version control system, check out the docs for

Sublimerge available at http://www.sublimerge.com/docs/vcs-integration.html.

Git, SVN and Mercurial Integration

145 of 202 Sublime Text Power User

http://www.sublimerge.com/docs/vcs-integration.html

Emmet is a package for Sublime Text that helps with writing of CSS and HTML. To

say that it speeds you up is an understatement, you would be silly to code HTML or

CSS without this package installed.

If you are already familiar with Zen Coding don't skip this chapter just yet, Emmet is

its successor that does so much more than the original Zen Coding. While you can

get the Emmet package for pretty much any editor, we are going to cover it

extensively as is so well aligned with the philosophy of Sublime Text.

Emmet is most famous for it's HTML shortcuts. If you write Jade, Slim or HAML,

everything here translates 100% with the latest version of Emmet.

With almost everything in Sublime Text, you type your shortcut and then hit the

tab key.

Start off simple, type the element name you want and hit tab. Notice how Emmet

puts your cursor right inside the tags? Handy!

SECTION 20

Mastering Emmet

20.1 Emmet and HTML

Elements

146 of 202 Sublime Text Power User

http://Emmet.io/blog/beta-v1-1/

p + tab → <p>|</p>

span + tab → |

img + tab →

Then we can step it up and add classes.

span.warning →

If you leave out the element before the class, it assumes a div:

.wrapper → <div class="wrapper"></div>

Notice how these are just CSS selectors + tab?

ul.nav → <ul class="nav">

Works with IDs too:

h2#post23 → <h2 id="post23"></h2>

You can also do both at the same time:

.post#post23 → <div class="post" id="post23"></div>

Just like CSS, you can also use square brackets to denote element attributes

input[placeholder="username"] → <input type="text" placeholder="username">

There is no limit to how many attributes you can set at once:

img[src="dog.jpg"][alt="Cute puppy"] → <img src="dog.jpg" alt="Cute

puppy">

You can even mix and match with classes/IDs:

Classes and IDs

Attributes

147 of 202 Sublime Text Power User

label.name[for="first"] → <label for="first" class="name"></label>

New to Emmet is the ability to insert text inside the elements:

p{hello world} → <p>hello world</p>

As always this can be used with any of the existing things we have learned:

span.warning{Watch out man!} → Watch out man!

We have all needed to quickly generate a bunch of elements before. Rather than

copy/paste, we can use the asterisk to multiply the number of elements:

li*3 →

As always, everything we learned before can be applied. Just make sure to put the

*n at the end of your recipe:

label.display{Yeah!}*2 → <label for="" class="display">Yeah!</label><label

for="" class="display">Yeah!</label>

A common use case for this is when your create a number of elements, each with a

class of box , but they also need a unique class such as box1 , box2 , etc..

This is where the amazing $ increment placeholder comes in. Just use $ where you

want 1/2/3 to be, and Emmet will replace it for you.

.box.box$*5 →

<div class="box box1"></div>

<div class="box box2"></div>

<div class="box box3"></div>

Text

Multiple Elements and $ placeholder

148 of 202 Sublime Text Power User

<div class="box box4"></div>

<div class="box box5"></div>

Awesome! The dollar sign works anywhere in an Emmet string.

li{Item $}*3 →

Item 1

Item 2

Item 3

If you uses more than one $, a leading zero will be placed for numbers under that

many digits.

img[src="dog$$.jpg"]*10 →

...

You can start the numbering at certain number:

li.item$@5*3 →

<li class="item5">

<li class="item6">

<li class="item7">

And even count backwards!

p.countdown$@-*10 →

<p class="countdown10"></p>

<p class="countdown9"></p>

...

<p class="countdown2"></p>

<p class="countdown1"></p>

Finally, one of the most powerful features in Emmet is to nest elements.

Nesting Elements

149 of 202 Sublime Text Power User

We can use the > to specify children:

div.wrapper>p.warning{Watch Out} →

<div class="wrapper">

<p class="warning">Watch Out</p>

</div>

And yes it works with everything else!

ul>li.book${Book $}*5 →

<li class="book1">Book 1

<li class="book2">Book 2

<li class="book3">Book 3

<li class="book4">Book 4

<li class="book5">Book 5

We can do siblings with the +

header+section.post+footer.bottom →

<header></header>

<section class="post"></section>

<footer class="bottom"></footer>

A lesser-known part of Emmet is the ability to pipe any Emmet selector into a filter.

For example, many developers like to add comments to the end of their elements so

there know when they start and end. For this we simply append |c to the end of the

selector like so:

.wrapper>.inner|c

And that gives us:

Emmet Filters

Closing Element Comments

150 of 202 Sublime Text Power User

<div class="wrapper">

<div class="inner"></div>

<!-- /.inner -->

</div>

<!-- /.wrapper -->

Pipe to e to have escaped HTML returned:

span.hello|e →

When you are in a HAML or Jade file, this is the default functionality, however if you

wish to get HAML or Jade in another HTML file - pipe in |haml or |jade

ul.drinks>li{Drink $}*3|jade →

ul.drinks

li Drink 1

li Drink 2

li Drink 3

Emmet does a great job of putting block elements on their own line and inline ones

beside each other. If, for whatever reason, you wish to put everything on a single

line, pipe |s .

.wrapper>p.warning|S → <div class="wrapper"><p class="warning"></p></div>

There are handful more HTML helpers including grouping, climbing, inputs and

document setup. I recommended you check the Emmet cheat sheet

http://docs.Emmet.io/cheat-sheet/

Escaping HTML

Pipe to HAML or Jade

Expand in a single Line

Even More

151 of 202 Sublime Text Power User

http://docs.Emmet.io/cheat-sheet/

The other major half of Emmet is useful when writing CSS (or Sass, LESS or Stylus).

Many think that Emmet is just a huge snippets library, when in reality it is much

more than that. The power of Emmet with CSS comes from the fuzz searching, which

means that we can just type a few characters of what we want, and Emmet will make

a best guess for what we wanted.

For example, if we want to type overflow:hidden; , just type oh , o-h , ovhi , ovh

or any number of combinations + tab and it will be replace with overflow:hidden; .

This is huge because we no longer have to memorize or guess what the snippet was,

we can just type as much as we think will get us there and 95% of the time, it works

out!

My preferred way of writing Emmet snippets is just to type the first 1-3 letters of

both the property and value.

posrel → position: relative;

posab → position: absolute;

fl → float:

fll → float: left;

fr → float: right;

db → display: block;

dib → display: inline-block;

tdn → text-decoration: none;

brad → border-radius:

c → color: #

w → width:

20.2 Emmet and CSS

152 of 202 Sublime Text Power User

p → padding:

You can also put a dash - in between the property/value. This is helpful when

things aren't going the way you want.

For example if you want position:absoute; , you might try pa . However, that

completes to padding: . Putting a dash between each letter will fix this: p-a

Emmet also allows the use of a colon : in place of the above mentioned dash.

However, it doesn't play nice with Sublime Text because sublime text auto completes

the semicolon ; when you type a colon in CSS. So, best to just avoid using the colon

and stick with dashes or nothing at all.

So, Emmet works great for property/value key pairs that are words, but what about

number units?

We already know that w and h give us width: and height: , so let's step it up a

notch.

Adding a value after any Emmet snippet will set it in pixels:

w100 → width: 100px;

h200 → height: 200px;

p10 → padding: 10px;

mr3 → margin-right: 3px;

adding a p or % after the value will turn them to percentages:

w100p → width: 100%;

h200p → height: 200%;

p10p → padding: 10%;

Numbers and Units

153 of 202 Sublime Text Power User

mr3p → margin-right: 3%;

Similiarily e will set ems and r will set rems:

w100e → width: 100em;

h200r → height: 200rem;

p10e → padding: 10em;

mr3r → margin-right: 3rem;

We can set multiple sides at once with dashes:

p10-20-5-50 → padding: 10px 20px 5px 50px;

And use i for inherit and a for auto.

m0-a-i-a → margin: 0 auto inherit auto;

It knows about borders too!

b1-s-#000 → bottom: 1px solid #000;

bbw2r → border-bottom-width: 2rem;

Colors in Emmet are pretty standard:

c → color:#000; c:r → color:rgb(0, 0, 0); c:ra → color:rgba(0, 0, 0,

.5);

As of Emmet 1.1, you can also covert hexcodes to RGBA values.

c#badda55.3 → color: rgba(186, 221, 165, 0.3);

bg#1d1.45 → background: rgba(17, 221, 17, 0.45);

bdc#fff.5 → border-color: rgba(255, 255, 255, 0.5);

Colors

154 of 202 Sublime Text Power User

There are almost a thousand possible snippets you could expand to with Emmet,

most of which you can figure out by just typing the first few letters.

For more, make sure to visit the cheat sheet at http://docs.Emmet.io/cheat-sheet/

The third part of Emmet is a handful of workflow/utility functions that it builds into

Sublime Text.

While Sublime text already has a wrap selection with tag, it's not nearly as nice or

flexible as Emmet. Sublime text only allows to you specify the tag name - no classes/

ids/attributes/nesting or any of the great things Emmet has to offer.

To use this, you simply need to be in any HTML/Slim/Jade/HAML document, select

the text you want and hit Ctrl + w or select Emmet: Wrap With Abbreviation from

the command palette.

More CSS

20.3 Other Emmet Hot Tips

Wrap with Emmet Snippet

155 of 202 Sublime Text Power User

http://docs.Emmet.io/cheat-sheet/

This will open an input box at the bottom of the editor, where you can type any

previously learned Emmet snippet. The default is a div, but you can put anything in

here.

156 of 202 Sublime Text Power User

157 of 202 Sublime Text Power User

When finished, hit enter to return to editing you code!

Data URIs are a way to convert binary files (usually PNGs and JPGs) into a single

string of text. This allows you to include images into your HTML or CSS without

having any external files.

We can use them in both HTML and CSS.

becomes

<img src="">

and in CSS

li {

background-image:url('check.png');

}

becomes

li {

background-image:url('

58ZDrAz3D/McH8yw83NDDeNGe4Ug9C9zwz3gVLMDA/A6P9/AFGGFyjOXZtQAAAAAElFTkSuQmCC');

}

I won't get into all about DataURIs right now, but for more info, read up on the Data

URI Wikipedia Article.

The cool thing about Emmet is that rather than using some generator the convert

them, you can do it right from the editor itself! When in either CSS or HTML, put

your cursor anywhere in the file path and hit Ctrl + Shift + D or select Emmet:

Encode/Decode Image to data:URI from the command palette.

Encoding / Decoding Data URI

158 of 202 Sublime Text Power User

http://en.wikipedia.org/wiki/Data_URI_scheme
http://en.wikipedia.org/wiki/Data_URI_scheme

Data URIs are usually huge, so if you are using them, I recommend turning line

wrapping off.

When writing CSS, you often need to bump values up or down by 0.1/1/10. Rather

than backspacing your current value and re-writing the new one, you can use

keyboard shortcuts to increment/decrement them!

For example, given this CSS. I want to increment each one 3px, 0.3rem and 30%

accordingly. You are probably used to this functionality from Chrome/Firefox

developer tools.

.wrapper {

padding:10px;

font-size:1.3rem;

width:50%;

}

Simply put your cursor anywhere within the number and use:

Ctrl + ↕ → up/down by 1

Alt + ↕ → up/down by 0.1

Alt + ⌘ + ↕ → up/down by 10

Increment/Decrement

159 of 202 Sublime Text Power User

When building a proof of concept app/web page, placeholder text is something that

can really slow you down. Thankfully Emmet can solve all of this for you.

To get placeholder text, simply type lorem and hit tab.

lorem → Lorem ipsum dolor sit amet, consectetur adipisicing elit.

Repellendus voluptatibus voluptas, ipsa quod officia quaerat at possimus

veritatis eveniet nemo dolores fuga quibusdam explicabo. Hic quae facere eius

aut consectetur.

Only want a bit, or a lot? Append the number of words you wish to have at the end of

the word lorem:

lorem5 → Lorem ipsum dolor sit amet.

You can also use this with Emmet snippets:

p>lorem → <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit.

Expedita inventore, error odit beatae, eveniet ratione modi ipsum nulla ex

obcaecati cupiditate quam quae nam consequuntur tenetur fugiat harum, dolore

repudiandae.</p>

even multiples!

ul>li*3>lorem4 →

Lorem ipsum dolor sit.

Totam tenetur dicta incidunt.

Blanditiis illo laborum reiciendis.

Long nested HTML? Sometimes it is hard to find which closing element belongs to

what. With matching pair you can jump to the associated open/close tag.

Lorem Ipsum

Matching Pair

160 of 202 Sublime Text Power User

Open this via the command palette or use the Ctrl + Shift + T shortcut.

Be sure to reference the documentation at http://docs.Emmet.io/ and the cheat

sheet http://docs.Emmet.io/cheat-sheet/

20.4 Other Emmet Treats

161 of 202 Sublime Text Power User

http://docs.Emmet.io/
http://docs.Emmet.io/cheat-sheet/

As a developer, how you work should be very important to you. By buying this book,

you are obviously very aware that your workflow can really impact the speed at

which you work as well as the quality of code you end up producing.

This section will cover various tools that you can use to both speed up how you work

as well as maintain and improve code quality.

Live reload is an package that communicates with your browser to reload your page

whenever a change to your website is make. It is one of my absolutely favorite tools

in my web development workflow because it speeds things up so quickly.

You may not realize it, but moving away from your editor to refresh your browser

can take a few seconds, and if you are doing this a few times a minute (and even

more if you are working on tweaking your CSS) it can quickly add up. Saving a few

seconds, 3 times a minute can add up to well over 3 hours over the course of your

week!

SECTION 21

Workflow & Code Quality

21.1 Live reload

162 of 202 Sublime Text Power User

There are two steps to install live reload. The first is the Sublime Text package. As we

always do, go ahead and search for Live Reload in package control. Go ahead and

install it. When done, Sublime will need a full restart.

Search for Live Reload

The second step is to get Sublime working with your web browser. Live Reload uses

web sockets to communicate to the browser when changes are made. If you are

using Chrome, Safari or Firefox on the desktop, there are great packages that get

everything running for you. Visit Live Reload website for links on each of those.

If you are using the chrome plugin, make sure you check the box that says "Allow

access to file URLs" otherwise you will be limited to local servers.

If you are running on another browser that doesn't support extensions, like a mobile

browser, you can still use live reload by placing the following JavaScript snippet into

your web page or application:

<script src="http://localhost:35729/livereload.js?snipver=1"></script>

To break that down, localhost is the local name for the server running on your

computer and 35729 is the port which live reload runs on.

Installing

Live reload on mobile devices

163 of 202 Sublime Text Power User

http://feedback.livereload.com/knowledgebase/articles/86242-how-do-i-install-and-use-the-browser-extensions-

If you are running live reload on your computer but testing on another computer or

mobile device, you will want to switch localhost with the IP address or local name

of your computer. My computer is named w , has the IP address of 192.168.124.112

and I have a local domain of test.com setup on my router (more info here) so any of

the following will work as long as the devices are on the same WIFI network.

<script src="http://w:35729/livereload.js?snipver=1"></script>

<script src="http://192.168.124.112:35729/livereload.js?snipver=1"></script>

<script src="http://test.com:35729/livereload.js?snipver=1"></script>

If you are a front end developer working with HTML, CSS and JavaScript, chances are

that you working locally. Being able to spin up a local server quickly is an extremely

helpful. There are no databases or programming langauges involved here, simply just

serving up static files as you would with Python's simpleHTTPserver or a LAMP

install.

Sublime Server is a package for Sublime Text that allows you start a localhost server

in a matter of seconds. The really nice thing about this package is that it will serve up

any directory or project you currently have open in sublime text, you aren't limited

to a single parent directory — go ahead and add directories from anywhere on your

computer.

It also replaces the native "Open in browser" functionality by opening that file on

your locahost instead of the file system. This is key for when you are working with

JavaScript AJAX requests that must be running in a server environment.

To install, open your command palette and type "install package". When the list

comes up, search for "Sublime Server" and hit enter. That is it, as simple as it gets.

Usage of Sublime Server is also pretty straight forward. Make sure you have a project

or a few folders open in Sublime and then go ahead and type "start" into your

command palette giving you the option to start the server.

21.2 Sublime Server

Installation and Usage

164 of 202 Sublime Text Power User

http://wesbos.com/localhost-mobile-device-testing/

Once you have done that, nothing will happen but the server will be running in the

background. By default the server runs on port 8080 which means that you can view

all your files by going to http://localhost:8080/ in the browser.

If you are already running something on port 8080 you can change this value and a

few others in the settings available at tools → SublimeServer → Settings...

You also have the option of viewing your files straight from Sublime Text. To do this,

right click any file and select "View This File in the Browser". This will open your file

in your preferred browser under the localhost server.

If you add folders to Sublime that you want served up, simply use the Restart

SublimeServer command. Once you are finished developing you can use the Stop

SublimeServer command. It's recommended that you turn this off when on a public

network because anyone with your IP address would be able to view your served up

files.

165 of 202 Sublime Text Power User

In the programming world, each language has a tool called a linter that analyses your

code, checking and flagging for potential errors, bad habits and consistency

mistakes.

A linting tool goes a long way in improving your coding style and a live linter is like a

slap on the hand every time you something as little as forget a semi colon or use a

restricted name for a method. A linting tool also lets you know when your code is

broken, saving you a trip to the browser/compiler/server to realize that you made a

mistake.

The holy grail of linting packages for Sublime is called SublimeLinter. It provides

linting for 16 langauges and growing, this includes C/C++, CoffeeScript, CSS, Git

Commit Messages, Haml, HTML, Java, JavaScript, Lua, Objective-J, Perl, PHP, Puppet,

Python, Ruby and XML.

Refer to the package installation section of this book to install SublimeLinter. For a

few languages, the package kicks off the linting task to the system installation of that

language so if you are trying to lint PHP, make sure you have php installed. If you are

trying to lint ruby, make sure you have ruby installed. You get the point :)

Additionally, if you are a JavasScript developer, you must also have Node.js installed.

If you do not, head on over to http://nodejs.org/ and download one of the easy

installers for mac, windows or linux.

Since most developers reading this book will touch on JavaScript at some point, I will

be using JavaScript as an example here, but the process for every langauge is the

same.

21.3 Live Linting with SublimeLinter

Linting your code

166 of 202 Sublime Text Power User

https://github.com/SublimeLinter/SublimeLinter
http://nodejs.org/

By default the linting kicks in after 2 seconds or on file save. If there is an error in

your code, you will automatically see lines surround the code that is affected. What

color something shows up as depends on if your theme supports Sublime Linter or

not. My Cobalt2 theme supports it so you will see warnings in orange and illegal

statements in red. Other themes wills simply show you white lines around the

effected code.

Here is an example of some JavaScript I wrote. At first glance, it may seem harmless

and will even run just fine. The linter is throwing flags on two items as they may

cause trouble down the road in our development.

Here is another example in CSS. While most haven't heard of linting CSS, it's a great

practice to get out of bad habits. In this example, I have "using ids" set to warning so

I'm seeing orange while using the color 'weswhite' is illegal red because that is not a

real color.

JavaScript Linting Example

CSS Linting Example

167 of 202 Sublime Text Power User

https://github.com/wesbos/cobalt2/

Every developer has their own style and they might not agree with all the rules that

are set by default in the linter settings. That is totally okay and is why linters have the

ability to turn on and off different rules. A big part of the linter is to make sure that

you are consistent with you coding style.

All of your user specific linting settings should go to into a file located at Packages/

User/SublimeLinter.sublime-settings . If you do not have that file, go ahead and

create it manually or by using the menu Preferences → Package Settings →

SublimeLinter → Settings - User .

A reference of all the available settings can be found at Packages/SublimeLinter/

SublimeLinter.sublime-settings . Event more options can be found by referencing

that langauge's linting documentation. Make sure to not edit these in place as they

will be overwritten next time the package is setup. Instead copy the settings out and

change them in our file inside the User directory.

For example, if I was a total boss that knew exactly how JavaScript automatic

semicolon insertion (ASI) worked, I could opt to turn off that rule in my own settings

document like so:

Linting Settings

168 of 202 Sublime Text Power User

Like it or not, FTP is still a part of many developer's workflow. While I encourage you

to embrace git version control and deployment systems such as grunt or capistrano,

there are still times when SFTP/FTP is needed. For this, there are two good solutions

which we will now dive into.

The SFTP package by Will Bond is a fantastic cross platform, stand alone solution.

The trial is fully featured and untimed, continued use runs $16 for the package and it

is worth every penny. Will Bond is the developer behind Sublime Package Control so

I feel $16 is a drop in the bucket considering all he has done for the Sublime Text

community.

The SFTP supports FTP, FTPS and SFTP servers as well as SSH key authentication. As

an added bonus, the package can detect changes via Git, Mercurial and SVN. As with

all things in Sublime Text, if you are used a nice graphical interface, this will take a

little getting used to.

To get started, install the package via package control, just as you would any other

package. We then have two options: map a local directory to a remote server or to

simply just tap into a remote server.

At the time of writing, the SFTP package is currently only supported in Sublime Text 2 although the author has noted intent to

port it over to Sublime Text 3.

21.4 Working with FTP / SFTP

SFTP Package

169 of 202 Sublime Text Power User

Again, I do not recommend simply FTPing into a remote server as that is a poor

workflow, but there are situations where this will happen.

Open up a blank window of Sublime and Choose File → SFTP/FTP → Setup

Server . This opens up the screen for configuring your server which in true Sublime

Text style, is just a JSON file. Uncomment the options that you require and change

the others - this is the same as any other FTP program.

This package comes with good defaults so if you are using a common hosting

provider, chances are you can leave most of them as-is only changing type , host ,

user and either password or ssh_key_file .

Because these files are stored as plain text on your hard drive, I recommend using

SSH keys rather than a text password. That way if you get hacked or accidentally

share one of these config files, there is no harm done.

Remote only server

170 of 202 Sublime Text Power User

When you are finished, ⌘S to save it in Packages/user/sftp_servers . The file name

will be used as the server name, so save it as something descriptive — spaces are

allowed and you should not include any extension.

Once saved, pop open your command palette and type to find SFTP Browse Server .

This will list all your available servers, just one if this is your first. Select the one you

wish to connect to.

171 of 202 Sublime Text Power User

If all your credentials are correct, you will see a listing of all your server's files.

Everything is done through the drop down palette, so resist the urge to use your

mouse, use your arrow keys to traverse through your folders. At the top of each

folder/file, you have a list of the usual FTP options such as creating, deleting and

CHMODing the permissions.

172 of 202 Sublime Text Power User

Working with the drop down palette can be slow and a little disruptive of your

workflow. At the time of writing there are a few solutions on the Will Bond's site that

are in development to implement a sidebar with the remote files.

173 of 202 Sublime Text Power User

http://wbond.net/sublime_packages/sftp/sidebar

The other (and safer) way to manage your FTP is to link a local directory to a remote

one on your server. This way you make edits to your local copy and then sync your

changes with the server. To set this up, open a project's folder in Sublime, right click

the folder name and choose SFTP/FTP → Map to Remote . This opens up a JSON file

similar to the one we filled out in the last section but with a few new options.

There are many options you can put in this file and I won't go into all of them here

but one really great option is to set the upload_on_save to true which will

automatically upload the file every time you save it. For a complete reference for all

the options visit the SFTP Package Website.

Save the above file in the directory that you would like to map to the remote server,

do not put in your users folder. Again, pay attention to whether or not you want to

include this file in your version control as it may contain sensitive information.

Mapping local to remote

174 of 202 Sublime Text Power User

http://wbond.net/sublime_packages/sftp/settings

If you were a hardcore filezilla user before Sublime Text you may have years and

years worth of FTP entries in FileZilla. Thankfully there is a nice little package called

SublimeZilla which allows you to import all your old favorites into Sublime SFTP.

If you are coming from a text editor like Coda or used to using a visual interface for

managing your websites, you may be used to saving a local copy of your file and then

uploading it remotely with a key press. While the previously mentioned SFTP

package does this, there is another useful package for users of Panic's Transmit.

To use this package, go ahead an install it from github or from package control. Once

you have your local directory and remote FTP setup with Transmit, you can simply

use the Ctrl + u keyboard shortcut to trigger a "dock send". Transmit will then

figure out where the local file is, and which remote file it needs to replace. Voilà, the

file has been uploaded.

Additionally, Ctrl + Shift + u will upload the file to the currently active transmit

connection.

You may have already caught on that a huge part of this book is doing things without

touching your mouse. The more you can do with you keyboard, the faster you will be.

One part of Sublime that I was using my mouse for was renaming files. When this

happens I would either right click the file in my sidebar and rename it, or do the

same in my computer's file browser.

Just like almost everything in sublime, you can do this via the command palette. Just

open it up and type rename. A text input will appear at the bottom of the screen for

you to rename the file.

(rename style.css to /css/style.css)

SFTP → Filezilla

Transmit Doc Send

21.5 Tricky trick: Renaming and moving files

175 of 202 Sublime Text Power User

https://github.com/ment4list/SublimeZilla
https://github.com/jeffturcotte/sublime_transmit_docksend

So what? Well, the real trick here is something you can't otherwise do in Sublime

Text, and that is move files from one folder to another — there is no dragging and

dropping in the sidebar.

To move a file from one directory to another, simply append a directory structure

before the file name. Here are a few examples with a file called style.css.

To move the file into a sub-directory called css:

rename style.css to ./css/style.css

To move the file back to where it was:

rename style.css to ../style.css

To create a directory called base inside of our css folder and then move the file

into that directory:

rename style.css to ./css/base/style.css

To get back up to our original spot, 2 directories up:

rename style.css to ../../style.css

Note I've prepended everything with their . or .. . In a file systems, theses mean

current directory and parent directory.

If you haven't heard of it, Bower is a front-end package manager much like NPM is

for Node, gem is for Ruby or PIP for Python. Rather than scouring the net and

downloading .js files, you can install them right from your editor.

While it might not make sense to use NPM, gem or pip from your editor because you

are in the terminal anyways, many front end developers can benefit from using

bower right from Sublime Text.

21.6 Bower Integration

176 of 202 Sublime Text Power User

First, make sure that you have Node installed, and then run npm install bower -g

from your terminal.

Next, install the bower package for Sublime Text.

First thing we need to do is do a bower config from the command palette. This will create a .bowerrc file inside your project

which will house a few settings including what the folder is called.

Now from the command palette, type bower install

177 of 202 Sublime Text Power User

https://sublime.wbond.net/packages/Bower

Then go ahead and search for the project you are looking for

Bower will create a folder called components and clone the entire repo into it's own folder

This plugin, developed by Ben Schwarz, is meant to be extremely simple. There are a

few things that you aren't able to do via the plugin. If you wish to save your

dependences into a bower.json file or run a bower update, you will still have to do

that from the command line.

Bower Caveats

178 of 202 Sublime Text Power User

It's almost sacrilegious to mention Vim in a book about Sublime Text. Vim users love

vim and even mentioning Sublime Text around a vim user can land you in a heated

discussion. If you are passionate about any editor, you are in fantastic shape. I'm not

here to debate which editor is better, but rather show you how you can harness the

power of Vim right inside of Sublime Text. If you want to replicate 100% of vim inside

Sublime Text, you should probably just use Vim, however there are many parts of

Vim which are replicated in Sublime Text which are very welcome.

For those not familiar with vim, a quick overview: it's an editor that has been around

for 20+ years. In fact, you probably already have vim installed, just open up your

terminal and type vim . Vim a an extremely powerful tool that has a really stripped

down interface. It's like sublime text in that you are able to move around quickly

without the mouse and speed up your development with hundreds of possible

packages.

A huge part of the power of vim comes from its non-standard way of interfacing with

the text in the editor. Instead of using your mouse, you use a series of commands to

move, select, cut, paste, delete, etc. Instead of being able to click around your file

and type, select and move text at once, Vim introduces the concept of modes in

which you can do different things in each mode.

SECTION 22

Vim Mode

179 of 202 Sublime Text Power User

Since this isn't a book about Vim, I'm not going go in depth about how to use vim, but

rather how to get Sublime Text to behave like Vim.

By Default, Sublime Text 2 ships with a package called "Vintage" that provides the

vim functionality. The package is developed openly on GitHub and while fairly

feature complete, it hasn't been updated in over a year. If you are using Sublime Text

2, this is the package you need to be using.

To get started, we simply need to enable it. Open your User Preferences with ⌘ + ,

and do a search for a setting called ignored_packages . You may have this setting

already if you have used package control to ignore a package, if you have never

ignored a package before, you will not see this setting. Since it's ignored by default,

we simply need to overwrite the default setting by omitting it. Your setting should

now look like this:

"ignored_packages": []

The above is just an empty array which overwrites the default of

"ignored_packages": ["Vintage"] . If you have other ignored packages, your setting

may look like this:

"ignored_packages":

[

"SubliminalCollaborator",

"MarkdownEditing",

"Nettuts+ Fetch",

"Goto-CSS-Declaration"

]

You can also turn on Vintage mode at a langauge level by adding

"ignored_packages": [] to your language specific settings file—more on this in the

settings section.

22.1 Making Sublime Text act like Vim

22.2 Sublime Text 2

180 of 202 Sublime Text Power User

https://github.com/sublimehq/Vintage

If you have upgraded to Sublime Text 3, using the Vintage package isn't the best

option for you. While you can get it working after sifting through the forums for

troubleshooting tips, there is a much better option called Vintageous .

Vintageous is a complete rewrite of the Vintage package made specifically for

Sublime Text 3. To install, simply find it via package control and hit enter. Like all

Sublime packages, the source is also available on GitHub.

Whether you are using ST2 Vintage or Sublime Text 3 Vintagous, the commands are

basically the same.

• Press esc to enter normal/command mode.

• Press i to enter insert mode

• Press v to enter visual mode

• Most other motions from vim have had their keys mapped

You are also able to use the following Vim CTRL keys:

• Ctrl+[: Escape

• Ctrl+R : Redo

• Ctrl+Y : Scroll down one line

• Ctrl+E : Scroll up one line

• Ctrl+F : Page Down

• Ctrl+B : Page Up

To enable these control keys, use the following settings in your User settings file.

"vintage_ctrl_keys": true // ST2

"vintageous_use_ctrl_keys": true // ST3

If you are using OSX Lion, Apple has implemented a press-and-hold to show

character variations. This isn't ideal because often you will want to hold down the

hjkl keys to move around your document. To disable this, open your computers

terminal (Found in Utilities) and paste the following. A restart may be required.

22.3 Sublime Text 3

22.4 Using Vintage Mode

OSX 10.7+

181 of 202 Sublime Text Power User

https://github.com/guillermooo/Vintageous

defaults write com.sublimetext.2 ApplePressAndHoldEnabled -bool false

and for Sublime Text 3:

defaults write com.sublimetext ApplePressAndHoldEnabled -bool false

Sounds too good to be true, right? Well, maybe. The Sublime implementation of vim

is done entirely with key bindings, which means that everything was already possible

with Sublime Text, but it has just been translated for those used to the vim keys.

Most importantly, Macros and commands haven't been ported as they are so tightly

tied with Vim. Not to fear, Sublime has these things implemented as well, you will

just need to learn or remap the keyboard shortcuts.

22.5 What's not included

182 of 202 Sublime Text Power User

So far, this book has been pretty agnostic towards which languages you work with -

everything said so far is beneficial whether you are a frontend JS/CSS dev or a

hardcore Python fanatic. Sublime has done a pretty good job shipping with defaults

for most languages but they aren't perfect. As languages progress we are introduced

to new syntaxes, design patterns and in the case of JavaScript and CSS, new

languages!

If you work in any of the following languages, it will be helpful to take a look at what

you can to do make your environment just that much better.

CSS3 has been around for some time now, but the syntax highlighting built into

Sublime Text is still based on an old textmate plugin.

Update your syntax highlighting by installing the CSS3 Syntax package.

SECTION 23

Language Specific Tweaks

23.1 CSS

183 of 202 Sublime Text Power User

Once done, you can set all your .css files to be highlighted using this new syntax file

rather than the old one. Open any .css file and go to view → syntax → Open all

with the current extension as... → css3

Chances are you are using some sort of CSS pre-processor to write your CSS. There

are a number of tools that can make writing LESS,SASS,SCSS and Stylus even more

fun.

23.2 LESS, SASS and Stylus

184 of 202 Sublime Text Power User

The first is to get a proper syntax highlighter. Editing your files in CSS mode will

work somewhat, but to take advantage of all the syntax highlighting features you will

need to install the following for each language. All of these are available on github or

via package control.

LESS: LESS-Sublime SASS: SASS-Textmate-bundle — also comes with a nice set of

snippets Stylus: Stylus Syntax Highlighting

Variables are a huge part of CSS Preprocessors and being able to access them via a

handy menu can really speed up your development time. The plugin sublime-list-

stylesheet-vars does this for all three languages and is a recommended installation

when working with one of these CSS preprocessors.

Writing coffeescript in Sublime is a hoot with the CoffeeScript Sublime Plugin. This

package provides a ton of functionality surrounding the language including syntax

highlighting, snippets and building CoffeeScript.

You may be interested more in CoffeeScript compiling (see the build section) or

CoffeeScript linting (see code quality section).

Just as with CSS preprocessors, the web development world is filled with templating

languages.

HAML: Comes default with Sublime Text's Ruby package

Slim: A collection of snippets and a syntax highlighter via slim-template

EJS: EJS syntax highlighting via EJS.tmLanguage

Syntax Highlighting

Helpful Tools

23.3 Coffeescript

23.4 Templating: HAML, Slim, EJS, Jade

185 of 202 Sublime Text Power User

https://github.com/danro/LESS-sublime
https://github.com/seaofclouds/sass-textmate-bundle
https://github.com/billymoon/Stylus
https://github.com/MaciekBaron/sublime-list-stylesheet-vars
https://github.com/MaciekBaron/sublime-list-stylesheet-vars
https://github.com/Xavura/CoffeeScript-Sublime-Plugin
https://github.com/slim-template/ruby-slim.tmbundle
https://github.com/samholmes/EJS.tmLanguage

When working with these templating languages, you may find yourself with HTML

that you need to turn into HAML or Jade. For times like these, utilize the html-to-

jade and html-do-haml packages.

I am primarily a JavaScript developer, so fine tuning my environment has been a

ongoing pursuit. I've already talked about the live linting tools in this book but there

are a few other things we can do to make developing JavaScript in Sublime a

pleasure.

First off, the JavaScript syntax highlighter that comes with Sublime does a very poor

job at properly highlighting you code. It also isn't updated for all the new goodies we

are seeing in ES5/ES6.

To remedy this, I recommend that you install the JavaScriptNEXT language for

Sublime Text which is available in package control under JavaScriptNext - ES6

Syntax. The author, Brandon Benvie, also has supplied a theme which is available on

the github page

I also recommend installing the JavaScript snippets pack by JP Richardson. It is

available on GitHub and package control.

Make sure you also read the section on JSHint Gutter below.

Code faster with the jQuery snippets pack

The Sublime Text Node.js package provides a set of snippets, code completion of the

Node API, as well as a handful of useful commands for running Node from Sublime

Text.

23.5 JavaScript

23.6 jQuery

23.7 Node.js

186 of 202 Sublime Text Power User

https://github.com/jfromaniello/sublime-html-to-jade
https://github.com/jfromaniello/sublime-html-to-jade
https://github.com/pavelpachkovskij/sublime-html-to-haml
https://github.com/Benvie/JavaScriptNext.tmLanguage
https://github.com/jprichardson/sublime-js-snippets
https://github.com/aaronpowell/sublime-jquery-snippets
https://sublime.wbond.net/packages/Nodejs

• PhpCS This plugin adds PHP CodeSniffer, PHP Coding Standards Fixer, the PHP Linter, PHP Mess Detector,

Scheck support to Sublime Text.

• PhpDoc CodeDoc is a Sublime Text 2/3 plugin to speedup writing documenting comments.

• PhpBeautifier

Sublime Text WordPress Package provides autocompletes and snippets for all of the

WordPress functions, hooks, constants and classes.

• Python Auto-Complete auto-completes built-in functions of the python language.

RuboCop is a static code analyzer that help your keep your coding style up to the

standards of the Ruby Style Guide. The SublimeLinter-rubocop package will

integrate this right into Sublime.

23.8 PHP

23.9 Wordpress

23.10 Python

23.11 Ruby

187 of 202 Sublime Text Power User

https://sublime.wbond.net/packages/Phpcs
https://sublime.wbond.net/packages/PhpDoc
https://sublime.wbond.net/packages/PhpBeautifier
https://sublime.wbond.net/packages/WordPress
https://sublime.wbond.net/packages/Python%20Auto-Complete
https://github.com/SublimeLinter/SublimeLinter-rubocop

In addition to all the packages talked about in this book, there are a handful of

packages that almost all developer will find useful.

I've already written in depth about Emmet and how it is an absolute must-have for

anyone writing HTML and/or CSS. Read the Emmet section of this book for

everything you need to know about it.

As you type paths to images/stylesheets/javascript, your editor should suggest the

next folder or filename. Surprisingly, this isn't a native feature of Sublime Text.

Installing Autofilename will add this functionality, so as you type, you can see a list of

folders, files and even image width/heights.

SECTION 24

Must have Add-on Packages

24.1 Emmet

24.2 Autofilename

188 of 202 Sublime Text Power User

Pretty JSON and HTML-CSS-JS Prettify are handy utilities that will take messy/

poorly formatted HTML, CSS or JSON and format and indent it properly. Very handy

when you receive a blob of generated code/json that needs to be readable.

The sidebar and the sidebar API in Sublime Text are pretty lacking in functionality,

and this can be a burden to users who are coming from editors that are more GUI

driven - some things just need to happen on a right click.

Lackluster Default Sidebar

SidebarEnhancements adds a ton of new functionality to the sidebar.

Let's start with opening files in other programs from the sidebar.

Right click and thne Open / Run will open the file in the operating system's default

program for that file type. If it is an HTML file, it will open in your default browser.

For me, HTML files open in Chrome Canary.

24.3 HTML + CSS + JSON Prettifyer

24.4 Sidebar enhancements

Open with...

189 of 202 Sublime Text Power User

https://sublime.wbond.net/packages/Pretty%20JSON
https://sublime.wbond.net/packages/HTML-CSS-JS%20Prettify

But what if I want to open it in FireFox from the sidebar? We need to add another

program. Right click the file, Open With → edit applications... . This will open up

a .sublime-menu JSON file. Go ahead and copy one of the current applications and

fill it out with the information for FireFox.

The two important lines to change here are "ID" and "application" . The

application path will be easy to fill out if you have previously installed the

AutoFileName extension.

Autofilename extension recognizes the path and suggests applications

The extension line will limit this application to certain file types. It makes sense that

we only want to open .HTML and .htm files, so we use "extensions":"html|htm" .

Leaving it blank ("extensions":"") will show up for everything including folders and

you can also use wildcards such as "extensions":".*" for any file with extension.

Once all is said and done, we have successfully added Firefox to our sidebar "Open

With" using the following code snippet:

// Open with Firefox

{

"caption": "Firefox",

"id": "side-bar-files-open-with-firefox",

"command": "side_bar_files_open_with",

"args": {

"paths": [],

"application": "/Applications/Firefox.app",

"extensions":"html|htm"

190 of 202 Sublime Text Power User

},

"open_automatically" : false // will close the view/tab and launch the application

},

If you are on Windows or Linux, make sure you use the appropriate path to your

programs.

Want all of them? Use the following snippet to add all the browsers to your sidebar:

All Mac Browsers

// Open with Firefox

{

"caption": "Firefox",

"id": "side-bar-files-open-with-firefox",

"command": "side_bar_files_open_with",

"args": {

"paths": [],

"application": "/Applications/Firefox.app",

"extensions":"html|htm"

},

"open_automatically" : false // will close the view/tab and launch the application

},

// Open with Safari

{

"caption": "Safari",

"id": "side-bar-files-open-with-safari",

"command": "side_bar_files_open_with",

"args": {

"paths": [],

"application": "/Applications/Safari.app",

"extensions":"html|htm"

},

"open_automatically" : false // will close the view/tab and launch the application

},

// Open with Chrome Stable

{

"caption": "Chrome Stable",

"id": "side-bar-files-open-with-chrome-stable",

191 of 202 Sublime Text Power User

"command": "side_bar_files_open_with",

"args": {

"paths": [],

"application": "/Applications/Google Chrome.app",

"extensions":"html|htm"

},

"open_automatically" : false // will close the view/tab and launch the application

},

// Open with Chrome Canary

{

"caption": "Chrome Canary",

"id": "side-bar-files-open-with-chrome-canary",

"command": "side_bar_files_open_with",

"args": {

"paths": [],

"application": "/Applications/Google Google Chrome Canary.app",

"extensions":"html|htm"

},

"open_automatically" : false // will close the view/tab and launch the application

},

// Open with Opera

{

"caption": "Opera",

"id": "side-bar-files-open-with-opera",

"command": "side_bar_files_open_with",

"args": {

"paths": [],

"application": "/Applications/Opera.app",

"extensions":"html|htm"

},

"open_automatically" : false // will close the view/tab and launch the application

},

These ones are fairly straight forward and do not require much explanation. cut /

copy / paste via the sidebar, something Sublime doesn't have by default.

More Features

192 of 202 Sublime Text Power User

As well as a few more advanced features around copying the file, copying the path,

duplicating a file, copying as base64, paste in parent and a handful of edge case

JSHint gutter is an alternative to Sublime Linter if you just need JavaScript linting. It

can be easier to setup and provides live linting support, placing flags in the gutter

when something is awry.

The Alignment package is a simple yet very popular add on for Sublime Text.

24.5 JSHint Gutter

24.6 Alignment

193 of 202 Sublime Text Power User

https://github.com/victorporof/Sublime-JSHint

Some coding style guides require that lines of text be aligned in a certain way. One of

those could be having your = align up when doing variable declaration.

With this package, we can take code that look like this:

Highlight it all and hit ⌘ + Ctrl + A (Alt + Ctrl + A on windows) making this:

Bracket highlighter is a very visual aid helping you see where yours brackets and tags

start/stop:

24.7 Bracket Highlighter

194 of 202 Sublime Text Power User

https://sublime.wbond.net/packages/BracketHighlighter

Multiple lines

Matches all types of brackets

Works in CSS Too!

Getting colored brackets requires that you install a theme that supports it. Cobalt2 is

ready to go.

195 of 202 Sublime Text Power User

Markdown is by far the best way to write. Everything from your project's readme to

blog posts to larger documents such as this book can all be written in markdown.

Using your code editor as a writing tool is far superior to other tools such as Word or

Google Docs. That said, Sublime needs a few packages before you can get the most

out of it as a document writer.

Sublime Text comes with a fairly good syntax highlighter, so without any packages

you are already setup to start writing markdown.

The package MarkdownEditing provides a suite of tools including two advanced

themes, auto-pairing of markdown syntax such as _underscores _ and *asterisks*,

as well as a handful of keyboard shortcuts.

While I recommend using Sublime Text to edit and another program (such as Marked

or Mau) to compile your markdown, there are options available if you wish to

compile right from Sublime Text. Markdown Preview will allow you to compile to

HTML and even preview it in the browser with a single keyboard shortcut.

MarkdownTOC is a package that will generate a table of contents for your entire

document. Simply run the command MarkdownTOC: Insert TOC once where you

wish to have the table of contents, and it will update the TOC on every save.

24.8 Writing Markdown with Sublime Text

Syntax Highlighter

Compiling

Table of Contents

196 of 202 Sublime Text Power User

https://sublime.wbond.net/packages/MarkdownEditing
https://sublime.wbond.net/packages/Markdown%20Preview
https://github.com/naokazuterada/MarkdownTOC

Once the comments are in your code, you have the ability the specify how many title

levels deep the TOC will go.

By default, the TOC won't be linked to the title, which is rather annoying, but you can

remedy that by giving each title an ID. MarkdownTOC will notice the ID and auto-

link them.

Growing Up[growing-up]

I must caution that update the TOC for large documents can be fairly slow and it

seems to block the editor while it is generating.

197 of 202 Sublime Text Power User

If you work on large documents, code folding is a great way to hide large chunks of

code when you aren't working on them. The problem with code folding in Sublime

Text is that the folds to not persist between sessions. This means that if you restart

sublime text, all your folds are gone!

BufferScroll is a package that will remember a whole slew of things when you close a

file, including:

• scroll position

• cursor positions

• selections

• marks

• bookmarks

• foldings

• selected syntax

• colour scheme

This package was referenced earlier in the Jumping, selecting and moving section.

Sublime has expand selection to [line,word,paragraph,scope,brackets,indentation]

but no "expand to quotes". So, install this one to extend the native functionality to

expand to quotes. Helpful when working with strings or HTML attributes.

https://github.com/kek/sublime-expand-selection-to-quotes

If you are the type that adds TODO comments littered through your code, Sublime

TODO is a handy little package that will gather all the references to TODO

comments and compile them into a single, linkable screen.

https://github.com/robcowie/SublimeTODO

24.9 Maintaining State on a file

24.10 Expand to quotes

24.11 TODO

198 of 202 Sublime Text Power User

https://sublime.wbond.net/packages/BufferScroll
https://github.com/kek/sublime-expand-selection-to-quotes
https://github.com/robcowie/SublimeTODO

This second of the book is filled with tiny, yet extremely useful hot tips. While they

might not fit into a chapter of this book, you will no doubt find many cases where

they are useful in your development workflow.

Whether you are referencing a constant or just toning down some content from an

overly zealous client, the case converting feature of sublime text allows you to

convert from and to upper and lower case as well as swap and Title case.

Lower and Uppercase are bound to ⌘ + K , ⌘ + U or L . Swapping case and titling

case do not have a keyboard shortcut but can be easily added with the title_case

and swap_case commands and Chapter 15 of this book.

These commands are quickly available via the command palette and slowly available

via the Edit menu item.

SECTION 25

Tip + Tricks Grab Bag

25.1 Converting Case

199 of 202 Sublime Text Power User

Every language has code comments. Toggle these commends with ⌘ + / . If

nothing is selected the entire line will be commented out.

If the language supports block commenting, add in option/alt into the mix to block

comment multiple lines of selected code. You can always uncomment a block

comment when the cursor is anywhere block.

Take the following code for example. 8 lines with 2 duplicates.

First thing we need to do is get rid of the duplicates. This is only available via the

Edit → Permute Lines menu, however you can add a keyboard shortcut with the

permute_lines command and the operation argument set to unique .

Selecting Unique will remove duplicate lines, leaving up with:

25.2 Code Comments

25.3 Sort, Reverse, Unique and Shuffle

200 of 202 Sublime Text Power User

Now the lines are already mixed but, but if we wanted some sort of randomness to

them, we could use the shuffle command.

Finally we want to order them, for this use use Sort Lines , available under the Edit

menu or the command palette. That leaves us with:

By now you get the point - we could also reverse them again with the reverse

command.

Sublime Text isn't just for writing code - we reviewed how to use the editor as a

fantastic markdown editor in Chapter 23. Whether you are writing prose or code,

sometimes we just need to focus on what we are writing and nothing else.

For this, Sublime Text offers Fullscreen Mode mode which gives you a fullscreen

editor. For Mac OSX users, this takes up it's own space.

One step further, Sublime offers a Distraction Free mode which hides all tabs,

gutters, line numbers and other editor chrome. It's just you and your code.

You can customize the settings for Distraction Free mode in Distraction

Free.sublime-settings available via Preferences → Settings - More →

Distraction Free .

25.4 Distraction Free / Fullscreen Mode

201 of 202 Sublime Text Power User

That's all folks. Congrats on making it through the entire book. You have learned a lot

and are well on your way to becoming a Sublime Text Power User! Keep practicing

the shortcuts and referencing this book.

Keep an eye on your email for updates to the book - I will let you know when a newer

version is released. If you have ideas or corrections you would like to suggest, please

email me at wes@wesbos.com.

Have a question about Sublime Text? There are a number of ways to get help:

• Tweet at me on twitter @wesbos

• Ask a question on Stack Overflow and tag it with Sublime Text - <stackoverflow.com/questions/tagged/

sublimetext>

• Register and visit the official Sublime Text forms - http://www.sublimetext.com/forum/

• Join the IRC chat on freenode - /j ##sublimetext

SECTION 26

fin

26.1 Updates

26.2 Have a question?

202 of 202 Sublime Text Power User

mailto:wes@wesbos.com
http://twitter.com/wesbos
http://www.sublimetext.com/forum/

	Sublime Text Power User
	About The Author
	Reviewers
	Introduction
	Mac, PC, Linux
	Jump Around!

	Getting Started
	Version 2 or 3?
	Installing Sublime Text
	Installing Package Control
	Installing a package
	Installing Packages Manually
	Adding a Repository

	Onward

	Getting Comfortable With The Command Palette
	Goto Anything
	Files
	Line Numbers
	Fuzzy Search
	Code & Text Blocks
	Chaining Commands
	Excluding Files & Folders From Search

	Changing Syntax
	Keyboard Shortcuts
	Snippets
	Practice

	Editor Settings & Customization
	Settings Files
	*.sublime-settings Files
	Syntax / Language Specific Settings
	Settings Files JSON Gotchas

	.sublime-keymap Files

	Syncing Your Settings
	Tabs, Spaces & Indentation
	Specifying Tabs Or Spaces
	Converting From Tabs → Spaces Or Spaces → Tabs
	Detecting Indentation
	Detect Settings with Editor Config Package
	Paste And Indent

	Fonts and Type Sizing
	Consolas
	M+2m
	inconsolata
	Menlo (sublime default)
	Monaco
	Ubuntu Mono
	Adobe Source Code Pro
	ANONYMOUS PRO
	Dejavu Sans Mono
	Envy Code R
	Hermit
	Tweaking Fonts

	Sidebar
	Minimap

	Code Completions and Intelligence
	Code Hinting / Auto Complete
	Where Auto Complete Fails
	Settings

	SublimeCodeIntel
	Installing on ST3
	1. Use the development branch
	2. Clear your CodeIntel cache

	3. Fix the language-specific config
	4. Be patient

	Terminal and Command Line Integration
	OSX
	Windows
	Linux
	Using subl from the command line
	Arguments

	Terminal Package

	Maximizing Screen Real Estate with Multiple Panes and Origami
	Panes Exercise
	Origami
	Create
	Destroy
	Focus
	Move
	Focus
	Resize

	Moving Between Tabs
	OSX
	Windows and Linux

	Working with Multiple Carets and Selection
	Replacing Words
	Quick Find Next / Quick Skip Next

	Modifying Multiple Lines at Once
	Another Multi-caret Example

	Themes and Color Schemes
	Color Schemes
	Color Scheme Selector Package

	Themes
	Finding Themes
	Handy Tools

	Snippets
	Creating Snippets
	Content
	Tab Trigger
	Snippet Scope
	Description
	Saving

	Finding Snippets

	Efficient Searching, Finding and Replacing
	Searching Inside of a Document
	Search Options
	Regex Search
	Case Sensitive
	Whole Word
	Show Context
	In Selection
	Wrap
	Highlight Matches
	Use Buffer

	Search & Replace Inside Projects and Folders
	Combining Filters

	Incremental Find
	Other Searching Tips

	Moving Selecting, Expanding and Wrapping
	Moving Lines and Code Blocks
	Line Bubbling / Swapping
	Reindenting Code Blocks
	Joining
	Duplicating
	Deleting
	Deleting Words
	Deleting Letters

	Inserting a line before
	Wrapping with tags
	Jump to BOL or EOL
	Moving to ends and starts of lines and files.
	Selecting, Jumping & Expanding
	Jump by Word
	Select & Expand word by word
	Select & Expand to certain words
	Jump by line
	Select & Expand to Line
	Select & Expand to Tag
	Select & Expand to Brackets
	Select & Expand to Indent
	Select & Expand to Quotes
	Selection and beyond!

	Code Folding
	Practice Code
	Folding Selected Text
	Block level code folding

	Fold Multiple blocks at once
	Folding with arrows
	Folding element attributes
	Maintaining Folding State

	Projects
	.sublime-project file makeup
	1. Folder Settings
	2. Settings Overwrite
	3. Build Systems

	Creating and updating projects

	Mastering Keyboard Shortcuts
	Negating carpel tunnel
	Reducing mistakes
	Becoming a more efficient coder
	The process of becoming a keyboard shortcut master
	Referencing Shortcuts
	What the heck are the ⌃⇧⌘⌥⎋ + SUPER Keys!?
	⌃
	⇧
	⌘ / Super / ÿ
	⌥
	⎋

	Creating Custom Keyboard Shortcuts
	Default Shortcuts
	Your Custom Keymap File
	keys
	command
	args
	context

	Dealing with Keyboard Shortcut Conflicts

	Macros
	Recording a macro
	Adding a keyboard shortcut
	Editing Macros

	Running, Testing and Deploying with Build Systems
	Creating a build File
	Selectors
	Variables
	Capturing Errors
	Path Issues
	Cross Platform

	Build Resources

	Bookmarks
	Working with Git
	Sublime + Git Tutorial
	Gittin' Ready
	Gittin' Goin'
	Adds and Commits
	Diffing
	Gitting everything else

	Additional Git Packages
	Sidebar Git

	GitGutter
	Sublimerge
	Comparing and merging two files
	Comparing Git Revisions
	Git, SVN and Mercurial Integration

	Mastering Emmet
	Emmet and HTML
	Elements
	Classes and IDs
	Attributes
	Text
	Multiple Elements and $ placeholder
	Nesting Elements
	Emmet Filters
	Closing Element Comments
	Escaping HTML
	Pipe to HAML or Jade
	Expand in a single Line

	Even More

	Emmet and CSS
	Numbers and Units
	Colors
	More CSS

	Other Emmet Hot Tips
	Wrap with Emmet Snippet
	Encoding / Decoding Data URI
	Increment/Decrement
	Lorem Ipsum
	Matching Pair

	Other Emmet Treats

	Workflow & Code Quality
	Live reload
	Installing
	Live reload on mobile devices

	Sublime Server
	Installation and Usage

	Live Linting with SublimeLinter
	Linting your code
	JavaScript Linting Example
	CSS Linting Example

	Linting Settings

	Working with FTP / SFTP
	SFTP Package
	Remote only server
	Mapping local to remote
	SFTP → Filezilla

	Transmit Doc Send

	Tricky trick: Renaming and moving files
	Bower Integration
	Bower Caveats

	Vim Mode
	Making Sublime Text act like Vim
	Sublime Text 2
	Sublime Text 3
	Using Vintage Mode
	OSX 10.7+

	What's not included

	Language Specific Tweaks
	CSS
	LESS, SASS and Stylus
	Syntax Highlighting
	Helpful Tools

	Coffeescript
	Templating: HAML, Slim, EJS, Jade
	JavaScript
	jQuery
	Node.js
	PHP
	Wordpress
	Python
	Ruby

	Must have Add-on Packages
	Emmet
	Autofilename
	HTML + CSS + JSON Prettifyer
	Sidebar enhancements
	Open with...
	More Features

	JSHint Gutter
	Alignment
	Bracket Highlighter
	Writing Markdown with Sublime Text
	Syntax Highlighter
	Compiling
	Table of Contents

	Maintaining State on a file
	Expand to quotes
	TODO

	Tip + Tricks Grab Bag
	Converting Case
	Code Comments
	Sort, Reverse, Unique and Shuffle
	Distraction Free / Fullscreen Mode

	fin
	Updates
	Have a question?

